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Abstract

This research project explores the machine learning domain of Audio-to-
Image generation, a field that employs audio signals to condition the image gen-
eration process. Existing approaches to this problem are limited by low resolu-
tion outputs and highly task specific applications. However, breakthroughs in
the analogous field of Text-to-Image generation offer promising avenues to ad-
dress these challenges. We present a proof-of-concept study demonstrating how
integrating these advancements into an Audio-to-Image generation framework
can lead to substantial performance improvements. Specifically, we detail the
first implementation of both a diffusion image generator and the advanced em-
bedding network, AudioCLIP, within the Audio-to-Image generation domain.
Results show a significant 70% improvement in FID scores in comparison to cur-
rent methodologies of equivalent image resolutions. We accompany this with
a series of experimental analyses highlighting how effective training strategies,
hyper-parameter configurations, and network architectures can be used to opti-
mise this framework. By doing so, we pave the way for future research directions
that could further advance Audio-to-Image generation models.
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Chapter 1

Introduction

The field of artificial intelligence has recently experienced a period of rapid advancements.
Much of this progress has been driven by the core sub-field of machine learning. Machine
learning involves the development of algorithms that can learn from data [8]. These learn-
ings can then be applied to new scenarios, helping solve a diverse array of complex prob-
lems [9].

Generative modelling is a uniquely interesting aspect of machine learning. It focuses on
creating new data that could convincingly belong to a specific, real data distribution [10].
For instance, a generative model could be trained on a large dataset of modern artworks,
after which, it could be used to create new works in the style of Picasso, Dali or Monet.

This contrasts with discriminative modeling, which separates existing data into cat-
egories to solve problems [10]. While discriminative models learn boundaries between
groups of data, generative models learn the distribution from which data arises [10]. Once
an appropriate distribution has been learnt, it can be sampled from, facilitating the creation
of new instances.

1.1 Problem Statement

Audio-to-Image generation is a fascinating area of generative modeling. Work in this do-
main employs audio signals to condition the image generation process [2]. This can be
understood as a multi-modal problem, where information from the audio modality is trans-
lated into the image modality. Previous research has effectively demonstrated the ability
to use bird calls to generate corresponding images of birds [11], and sounds from musical
performances to generate imagery of source instruments [2].

This is achieved by employing a two sub-network model architecture. An audio encod-
ing network is first used to convert an audio sample into an embedding. In this context,
embeddings can be understood as learned numerical representations which describe the
content of an audio sample [2]. The embedding is then passed to an image generation net-
work where it is used to guide the generative process. Done effectively, the generated output
image will visually align with the audio signal.

1.2 Motivation

From a theoretical perspective, Audio-to-Image generation possesses an important quality.
Namely, it is the first formulation of an inter-sensory multi-modal image generation prob-
lem [2]. This is particularly interesting for two reasons. Firstly, combining inter-sensory
information is a fundamentally how we interact with the world. As humans, we frequently
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combine information from multiple sensory channels to enrich our understanding of the sce-
narios we find ourselves in. As such, it is reasonable to believe that effectively integrating
this capacity into machine learning models could prove highly beneficial.

This leads into the second desirable quality. To effectively integrate multi-sensory infor-
mation into machine learning models, it is beneficial to understand how translation between
the modalities occurs. Audio-to-Image generation affords us with this capacity. By provid-
ing a visual output, we gain an examinable means of understanding the inter-modal rela-
tionships between audio and images. This has the potential to provide effective feedback to
researchers, that could be used to help improve future multi-sensory networks.

To realize these benefits, it is important to develop high performing Audio-to-Image
generation models. By doing so, we gain a solid foundation from which to conduct further
research. This said, Audio-to-Image generation is a relatively underexplored domain, with
state-of-the-art models limited to low resolution outputs and highly task-specific applica-
tions [2][11].

Interestingly, the related domain of Text-to-Image generation is substantially more ad-
vanced. Within the past 12 months, models such as Stable Diffusion [12], Imagen [13], and
DALL-E 2 [14] have demonstrated an impressive ability to generate high-quality, semanti-
cally aligned images, in a broad array of contexts.

These developments are the result of a variety of factors. A number of which are beyond
the scope of this research project to consider incorporating. Specifically, the compilation of
large-scale datasets and application of extensive computational resources [14][13][12][15].
That said, there are two architectural improvements we have the capability to investigate.
Those being diffusion networks [16] and highly visually expressive contrastively trained
embedding networks [17][14]. The former provides a tractable means of generating images
that can be effectively applied to large scale training configurations [16]. The latter affords
us with a practical method of encoding visually meaningful information into embeddings
[17], a technique associated with the improvements in the visual quality of images [14].

1.3 Goals

In this research project, we focus our efforts upon incorporating developments from the
Text-to-Image generation domain into the Audio-to-Image domain. We specifically do the
following:

• Conduct a comprehensive literature review, building off the author’s AIML 501 project.
Here we provide information on foundational concepts, detail existing literature in
the Audio-to-Image generation domain, and present relevant details from the Text-to-
Image generation domain.

• Propose the first application of a diffusion model in the Audio-to-Image generation
domain.

• Integrate a highly visually expressive embedding network into the Audio-to-Image
generation domain.

• Provide experimental analyses centered upon improving the performance of both net-
works.

• Evaluate the performance of both networks in comparison to existing literature.
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1.4 Organization

We arrange this research project into six distinct chapters. A literature review is provided
in Chapter 2, detailing important foundational concepts and highlighting pertinent devel-
opments in Audio-to-Image generation and related domains. We note that some of this
literature review is taken from the author’s AIML 501 project completed last semester. A ta-
ble is presented at the beginning of Chapter 2 identifying which aspects of the review come
from our previous work. In Chapter 3, we detail the proposed model architecture, describe
its implementation and provide justification for our decisions. Chapter 4, Experimental De-
sign, provides detailed descriptions of the experimental analyses conducted. The results
of these experiments are presented in Chapter 5, alongside a discussion of their relevance.
Finally, we conclude with Chapter 6, summarizing key findings, limitations and suggesting
directions for future work.
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Chapter 2

Literature Review

2.1 Chapter Overview

In this chapter we provide a representative literature review to support this research project.
Here, we detail the foundational machine learning concepts necessary to engage with the
topic, alongside relevant works within the Audio-to-Image and Text-to-Image generation
domains.

It is important to mention that certain aspects of this literature review have been adapted
from the author’s AIML 501 project completed last semester. We delineate these sections in
Table 2.1. Those parts taken from AIML 501 are given with a level of adaptation. This cap-
tures the effort required to translate each section into an appropriate format for the current
report.

Table 2.1: Table of work origin. Adaptation defines how much work went into translating
information from AIML 501 to 589.

Section Source Adaptation Effort
Deep Neural Networks 501 Low
Convolutional Neural Networks 589 N/A
Attention 589 N/A
Generative Adversarial Networks 501 Low
Conditional Generative Adversarial Networks 501 Low
Denoising Diffusion Models 501 Moderate
Audio Encoders 589 N/A
Inception Score (IS) 501 Low
Frechet Inception Distance (FID) 501 Low
Image Classifier Networks 589 N/A
Deep Cross Modal Audio Visual Generation 589 N/A
CMCGAN 589 N/A
Cross Modal Contrastive Representation Learning 589 N/A
AudioCLIP 589 N/A
Audio-to-Image Summary 589 N/A
GLIDE 501 Moderate
DALL-E 2 501 Moderate
Latent Diffusion Models 501 Moderate
Summary 589 N/A

5



This literature review is organized into five sections. Section one details the foundational
concepts our research project is predicated upon. This includes an overview of deep neural
networks, convolutional networks, and attention mechanisms. With these understood, we
transition into a discussion of relevant model architectures. Specifically, describing the func-
tioning of Generative Adversarial Networks (GANs), diffusion models, and audio encoders.
GANs are commonly used in current Audio-to-Image generation research, while diffusion
models are the generative backbone of our proposed advancement. Additionally, audio en-
coders serve a fundamental role, creating the conditioning information used to guide the
generative process. Consequently, it is necessary for readers to gain an understanding for
how each of these networks function.

We then provide a brief discussion of relevant performance metrics, followed by an
overview of pertinent literature in the Audio-to-Image generation domain. It is beyond the
scope of this research project to provide a comprehensive discussion of Audio-to-Image gen-
eration literature, thus we only highlight those works that are most relevant to the current
project. Finally, we end with a review of contributions within the Text-to-Image genera-
tion domain. By doing so, we aim to provide readers with an understanding of where our
contributions were derived from.

2.2 Foundational Concepts

2.2.1 Deep Neural Networks

At their core, DNNs stack layers of computations sequentially, learning a mapping function
f (·) that converts a set of inputs x into desired outputs y [9]. This computation is defined
by the networks parameters θ. Parameters are learnt during training via the optimization
of a loss function. Loss functions measure how well a network maps x to y. By taking
the gradient of a loss function, with respect to θ, parameters can be adjusted to improve
the mapping function. Repeating this process iteratively allows DNNs to learn effective
mappings, facilitating the solving of complex problems [9].

Deep generative networks (DGNs) are a specific type of DNN that can create new data
[10]. These models learn a mapping function to convert input data to a specific, sampleable
distribution [9]. For instance, a DGN may learn to map random noise to a distribution of
modern artworks p(x). Once this has been learnt, the model can be given samples of noise
and convert them into new instances that mimic modern art.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specifically designed networks that specialize
in processing data structured in an inherently meaningful grid, most commonly images [9].
To achieve this, CNNs detect spatial patterns by employing three types of computational
layers.

Convolutional Layers

Convolutional layers scan filters sequentially across an input [9]. Filters detect patterns
within the input, for instance, the presence of edges, corners and colours etc. Each filter is
comprised of multiple kernels that act on individual channels of the input [9]. Each kernel
tends to be a few pixels wide in both the horizontal and vertical direction, and is parameter-
ized by a set of learnable weights. These weights determine the patterns each kernel learns
to detect, and are optimized during training in the same fashion described in Section 2.2.1.
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The output of a convolution layer can be understood as a representation of the presence of
those patterns within the input.

Pooling Layers

Pooling layers are used to reduce the dimensionality of the input. Doing so lessens the
computational effort required to train the model, and prevents overfitting [9]. They achieve
this by synthesizing information within a defined range of the input. For instance they may
scan a 2 × 2 pixel square sequentially over the output of a convolutional layer, at each point
taking only the maximum value within this range as the output. This approach is known
as max pooling and is commonly applied [9]. However, other approaches (e.g. average
pooling) can also be implemented [9].

Fully Connected Layers

Finally, CNNs employ fully connected layers to convert feature representations into outputs
[9]. These are used to synthesize the features produced via convolutional and pooling layers
into a predefined form. For instance, a fully connected layer may be employed to convert
convolutional outputs into 2 values. These could represent the models confidence the origi-
nal input to the network was an image of either a cat or a dog. By performing this function,
the fully connected layer allows the CNN to apply its learnt features to an arbitrary array of
classification problems.

2.2.3 Attention

Taking inspiration from human cognition, attention mechanisms allow neural networks to
focus on different portions of the input, proportional to their relevance [18]. This feature has
proven highly effective in machine translation [19] and computer vision tasks [20], enabling
the more efficient and effective processing of complex data.

We can separate attention operations into two categories, those being self-and-cross-
attention. The former calculation works by taking an input X and linearly projecting it into
query, key and value vectors Q, K and V. Each vector serves a different role in the attention
calculation, thus we transform the input differently for each. Transformations are achieved
linearly by multiplying X by three different learnable weight matrices Wq, Wk and Wv such
that Q = X · Wq, K = X · Wk and V = X · Wv [18].

Once complete, we use query and key vectors to calculate attention scores. We can un-
derstand the query vector as representing the original input, and the key vector as repre-
senting the relevance of each aspect of the input. Attention scores are derived by taking the
dot product between Q and K denoted by QKT[18]. Performing this operation allows us
to calculate the similarity between elements of each vector, with higher values indicating a
greater degree of similarity [18].

We then normalize attention scores by dividing them by the square-root of the dimen-
sionality of K. This serves to prevent exploding/vanishing gradients during the subsequent
softmax operation by avoiding overly large/small attention scores [18]. Finally, we multiply
V by the softmaxed attention scores, producing a transformed version of the input, whereby
values of its most relevant components are increased. The formula for the attention calcula-
tion can be seen below in Equation 2.1.

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (2.1)
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Cross-attention operates similarly to self-attention; however, Wk and Wv are utilized to
project another vector Y into K and V [12]. In this configuration, attention scores represent
the relevance between each element of X with respect to a secondary vector Y. This is espe-
cially helpful when the goal is to modify X to emphasize values related to Y. For example,
imagine X is a part of an image, and Y is a textual condition. Implementing cross-attention
between X and Y, would then provide a mechanism to adjust the image to better align with
conditioning information [12].

2.3 Model Architecture

2.3.1 Generative Adversarial Networks

Although Generative Adversarial Networks (GANs) are not an aspect of the contributions
provided by this research project, they do play a significant role within the existing Audio-
to-Image generation literature. Consequently, a succinct overview is provided below.

Introduced by Goodfellow et al. [21] in 2014, GANs are composed of two opposing net-
works trained simultaneously. The basic structure involves training a generator G to convert
noise z sampled from a normal distribution pz into a target data distribution Pdata. The gen-
erator’s outputs are then fed to a discriminator D, which is trained to distinguish generated
data from real data x ∼ Pdata. This training process can be understood as a competitive game
between the two networks, with performance measured by the value function V(G, D).

V(G, D) = min
G

max
D

Ex∼pdata [log D(x)] + Ez∼pz [1 − log D(G(z))]. (2.2)

Specifically, the discriminator D is trained to maximize the log-likelihood of assigning
the correct label to inputs (log D(x) for real inputs and 1 − log D(G(z)) for generated in-
puts). In contrast, the generator G aims to minimize the log-likelihood of the discriminator
detecting its output as false (1 − log D(G(z))) [21]. It is worth mentioning that minimiz-
ing the objective for G can lead to unstable gradients [22], so in practice, the generator’s
objective is often redefined to maximizing log D(G(z)).

GANs are noteworthy for not possessing an explicit likelihood function over the data
distribution [21]. Instead they optimize the value function. This can be understood as an
implicit likelihood function, where the data distribution is learnt by proxy of learning to fool
the discriminator. In other words, the generator never gets explicit access to the likelihood
function of the data. This can make training GANs challenging, as there is nothing forcing
the generator to learn the desired data distribution [23].

2.3.2 Conditional GANs

By incorporating a conditioning variable y into the value function, GANs can be redefined
as conditional generative models [24]. Under this implementation, both models G and D
are provided with an additional input y. In the image generation case, y could specify the
content images ought to contain. For instance, y could represent different types of animals,
if y = dog, generated outputs would have to reflect this. This provides users with more
control over the generative process. The value function for the conditional case is defined
as:

V(G, D) = min
G

max
D

Ex∼pdata [log D(x|y)] + Ez∼pz [1 − log D(G(z|y))]. (2.3)
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Audio-to-Image models condition the generative process on audio samples [2]. In this
case y can be understood as an audio embedding. We provide more detail on this specific
interpretation in Section 2.3.4.

2.3.3 Denoising Diffusion Models

Diffusion models serve as the architectural foundation for many state-of-the-art Text-to-
Image generation models [15][14][12][13], making them a central focus of this research project.

First introduced by Sohl-Dickstein et al. [16] in 2015, diffusion models offer a highly
tractable generative alternative to GANs, and consist of two primary processes. The forward
noising process involves iteratively adding noise to data, gradually eroding its structure
[16]. By doing so, the output approaches the distribution from which noise was sampled
[25]. The reverse process undoes this operation, iteratively removing noise and reinstating
the structure of the original distribution [16]. If an effective reverse process is learnt, the
model will be able to reproduce the original data from samples of noise [16].

Both the forwards and reverse processes are Markov chain operations, where the output
at time t relies only on the output at the preceding time-step t − 1 [26]. Thus, the forward
process is defined as q(xt|xt−1) and the reverse process as pθ(xt−1|xt), where xt represents
the original data after t noising operations. Assuming noise follows an isotropic Gaussian
distribution, as is most common, q(xt|xt−1) is defined in accordance with Equation 2.4.

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI). (2.4)

Here, βt determines the variance and is scheduled to be relatively small when compared
to the original data. This ensures the reverse process remains tractable [16]. The reverse
process is defined as per Equation 2.5, where µθ(xt, t) and Σθ(xt, t) are neural networks that
take noised data xt and time t as inputs, and return parameter estimates for the mean and
variance of the data distribution at time t − 1.

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)). (2.5)

While Nichol and Dhariwal [25] found it beneficial to use Σθ(xt, t) to predict variance,
many applications prefer to use a constant (βI) for simplicity. This approach reduces com-
putational requirements by eliminating the need for a secondary network. It is also worth
noting that Ho et al. [26] found that estimating the noise added to the image at each time
step was more effective than directly predicting mean values of previous image (xt−1). Both
approaches aim to produce xt−1 as the desired output, although they employ different strate-
gies to achieve this. As such, they can be viewed as distinct interpretations of the same
problem [26].

U-Nets are widely used to learn the reverse process. They function by iteratively down-
sampling an image xt into a bottleneck layer and employ up-sample blocks to generate the
image from the preceding time-step, xt−1 [26]. The standard architecture applies convolu-
tions prior to up-and-down-sampling operations to extract feature representations from xt.
Additionally, layers of attention are incorporated between each up-and-down-sample block
to facilitate an effective reverse process [26]. A visualization of the U-Net design can be seen
in Figure 2.1.

When discussing diffusion models in the context of conditional image generation, it is
essential to touch upon classifier and classifier-free guidance. These two techniques are
frequently employed to promote improved alignment between generated images and con-
ditioning information [27][28].

Classifier guidance utilizes a pre-trained classification network during image generation.
At a given time-step, the diffusion model generates an image xt, and the classifier is used
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Figure 2.1: U-Net architecture. Image taken from [1].

to predict the class it believes xt belongs to. The gradient of the classifier’s prediction with
respect to the desired class provides information on how the image should be altered to
better align with conditioning information [27]. The diffusion model then integrates this
information to refine the image generation process [27].

Classifier-free guidance achieves the same goal without the need for an additional clas-
sification network [28]. During training conditional information is removed p proportion
of the time. By doing so, the generative network learns to produce both conditional and
unconditional images. At sampling time, the model produces both a conditional and an
unconditional image. By interpolating between these images, one can ascertain how the un-
conditional image ought to be altered to align it with conditioning information. By adding
this difference to the unconditional image and scaling it by some value s ≥ 1, the resulting
image has been shown to better align with conditioning information [28].

2.3.4 Audio Encoders

Conditioning image generation on audio requires translating auditory information into a
format machine learning models can understand. Audio encoding networks are used to fa-
cilitate this. These networks take audio samples as input, and convert them into n-dimensional
numerical embedding vectors that represent their meaning.

It can sometimes be useful to understand embeddings vectors spatially. When n = 2
embeddings can be visualized on a scatterplot. Assuming the network has learnt effective
representations, you could expect to see distinct clusters of audio signals located across the
scatterplot. For example, the sound of car horns may be found in the upper-right section,
while the quiet hum of a bee flying may be placed far down in the lower-left most corner.
In practice, embeddings are frequently high dimensional objects that cannot be visualized,
however, the principal of spatial separation remains the same.

Most audio encoding models operate on a time-frequency representation of the audio
signal [6][2][3]. Doing so has proven to be an effective means of extracting useful infor-
mation, and has been shown to produce better results than using the raw audio waveform
[29]. A variety of time-frequency transformations have been applied within the literature,
with the log-mel spectrogram transformation emerging as one of the most popular [2][3].
Log-mel spectrograms display audio signals as two-dimensional arrays where the x axis
represents time, and the y frequency. The power within a short time window for each fre-
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quency is then mapped to a colour scale, producing a visually interpretable representation
of the audio signal [2]. Recently, the application of learnable time-frequency transforma-
tions has emerged as a popular alternative [6]. These methods formulate the time-frequency
transformation as a component of the network defined by a set of parameters θ. These pa-
rameters can then be trained, allowing the network to learn an optimal transformation [6].
We provide more detail on learnable time-frequency transformations in Section 3.2.2.

Once a time-frequency representation of the audio signal has been produced, a CNN
is employed, extracting relevant features from the spectrograms [29][2][6]. This is gener-
ally formulated as a classification problem, where the CNN is trained to identify important
patterns within the spectrogram that are useful for discerning the class each audio signal
belongs to [6]. By doing so, the CNN learns meaningful representations that can be used to
discriminate between different types of audio samples.

For classification purposes CNNs are structured such that the final layer contains m
nodes, where m is equal to the number of classes in the classification problem [6]. This is
often quite a small number, resulting in a limited capacity to represent information. More-
over, the values in the final layer are fine-tuned to describe how likely an input is to belong
to each given class, rather than describing the input itself. As such, researchers opt to take
the output of the penultimate fully connected layer as the audio embedding [6]. This layer
synthesizes information from the convolutional operations into a vector of arbitrary dimen-
sionality. Doing so results in a more generalizable embedding, better suited to describing
the contents of the audio signal.

2.4 Performance metrics

2.4.1 Inception score (IS)

The Inception score (IS) [23] incorporates a pre-trained Inception-v3 model [30] to measure
the quality of generated images. To do so, generated images are passed to the Inception-v3
model to ascertain a predicted class distribution p(y|x). If the generator produces images
representative of a particular class, the conditional label distribution p(y|x) should have
relatively low entropy [23]. In addition, to evaluate the variety of generated images, the
marginal distribution

∫
p(y|x = G(z))dz is calculated, where G(z) represents the generator

function [23]. If the marginal distribution has high entropy, G(z) can be understood as pro-
ducing diverse images. The IS quantifies both criteria by employing the following equation:

IS = exp(ExKL(p(y|x)||p(y)). (2.6)

This provides a measure of the average divergence between the marginal and condi-
tional distribution over all generated images. Given that we have opposing objectives for
both p(y) and p(y|x), we desire the two distributions to be farther apart. Consequently,
larger values of IS are desirable. The main limitation of the IS is that it does not com-
pare generated images to real images, thus it can be fooled by unrealistic images that the
Inception-v3 model is confident about [31].

2.4.2 Fréchet Inception Distance (FID)

As with the IS, the Fréchet Inception Distance (FID) also utilizes the Inception-v3 model to
evaluate performance of image generators [31]. The distinction lies in how the Inception-v3
model is incorporated. Rather than evaluating the output distribution, FID measures the
distance between feature representations of real and generated images [31]. Specifically, the
mean and covariance of node activations for real (µr, Σr) and generated (µg, Σg) images are

11



taken from the final layer of the Inception-v3 model [31]. It is assumed that these activations
come from a multidimensional Gaussian [31], thus the distance between the two distribu-
tions is given by the equation below, where Tr denotes the trace.

FID = ∥µr − µg∥2
2 + Tr

(
Σr + Σg − 2(ΣrΣg)

1/2
)

(2.7)

The first component ∥µr − µg∥2
2 captures the L2 distance between means for real and

generated images, while the second Tr
(
Σr + Σg − 2(ΣrΣg)1/2) measures the total variance

between the distributions. Smaller FID scores indicate greater similarity between real and
generated images and vice versa. Consequently, smaller FID scores indicate better perfor-
mance.

Importantly, FID addresses the major limitation of the IS by comparing generated images
to real ones. This makes the measure harder to fool, and has been shown to better align with
human judgement [31][32]. As such it is generally regarded as a better measure of image
quality [31].

2.4.3 Image Classifier Networks

Image classifiers are commonly applied in simple Audio-to-Image generation problems to
quantify conditional adherence [2][3][29]. By conditional adherence we refer to the extent to
which the generative network produces samples that align with conditioning information.

To measure this, researchers train and evaluate an image classifier (typically a CNN) on
real images from a given dataset. Importantly, this dataset is the same one used to train the
generative model [2]. By doing so, the classifier develops a capacity to identify the contents
generated images. The classifier can then be applied to a set of generated images where the
conditioning information is known. Researchers then measure the extent to which classi-
fier predictions align with conditioning information to calculate a measure of conditional
adherence [2].

It is important to note that this method can only be reliably implemented when the train-
ing dataset is easy to classify. This is because the image classification network must achieve
near perfect accuracy to give a reliable performance measure on generated samples.

2.5 Audio-to-Image

In the following section, we shift focus to discussing existing literature within the Audio-
to-Image generation domain. We highlight the key contributions that have significantly
impacted the field, with specific focus on those that are most relevant to the current research
project. Due to constraints defined by the project’s scope, this review will not encompass all
aspects of the domain. This said, the works included have been carefully curated to ensure
the review provides a sufficient amount of detail into the most pertinent aspects of the field.

2.5.1 Deep Cross Modal Audio Visual Generation

In 2017, Chen et al. [2] published the seminal Audio-to-Image generation paper. The authors
used a GAN, conditioned on musical audio samples to synthesize 64 × 64 × 3 images of
individuals playing musical instruments [2].

Their generative framework was comprised of two separate models. An audio encoding
network was first used to process a time-frequency transformation of the raw audio signal
using a CNN [2]. The authors considered various time-frequency transformations, compar-
ing model performance with each. Specifically, they assessed the classification accuracy of
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the audio encoding model using five different transformations. Those being: Short-Time
Fourier Transform (STFT), Constant-Q Transform (CQT), Mel-Frequency Cepstral Coeffi-
cients (MFCC), Mel-Spectrum (MS) and Log-Mel Spectrum (LMS) time-frequency transfor-
mations [2]. LMS transformations were found to perform the best (see Table 2.2). Con-
sequently, the authors opted to use these as input to their embedding network. A visual
comparison of different time-frequency transformations can be found in Figure 2.2. In this,
we see that LMS outputs appear to contain the most information about the audio signal.
This additional information could explain the improvement in performance.

Figure 2.2: Visualization of different time-frequency transformations. Image taken from [2].

The authors passed embeddings obtained from the encoding model to the generative
network, where their dimensionality is reduced via a leaky ReLU activated fully connected
layer. This operation speeds up training, and also provides the generative network the op-
portunity to determine which aspects of the embedding are most salient to the image gen-
eration process [2]. The processed embedding is then concatenated with random noise and
passed through a series of convolutional up-sampling blocks to produce a generated image
[2]. A discriminator is employed to determine the origin of the generated sample. As dis-
cussed in Section 2.3.1, both networks are trained adversarially, allowing the generator to
implicitly learn the underlying data distribution.

A separate classification network was incorporated to determine whether generated im-
ages corresponded to the correct class. Findings indicated that samples aligned with con-
ditioning information 75.56% of the time [2]. The authors refer to their Audio-to-Image
generation model as S2I-C [2].

2.5.2 CMCGAN

The authors of CMCGAN [3] incorporate principals derived from CycleGAN [33] to create
a novel end-to-end Audio-to-Image generation network. Moreover, they do so while also
increasing image resolution to 128 × 128 × 3 [3]. We use end-to-end in the typical sense,
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Table 2.2: Table of audio encoder classification accuracies across five different time-
frequency transformations [2].

MS LMS CQT MFCC STFT
Classification Accuracy 66.09% 87.44% 77.78% 81.05% 75.73%

describing a network whereby all sub-components (e.g. audio embedding network and
image generation network) are trained concurrently.

The proposed model is comprised of two encoders, one for audio data (EA) and one for
image data (EI), and two decoders for the same modalities (DA and DI). EA and EI are re-
sponsible for generating latent data representations from their inputs, those being log-mel
spectrograms and images of individuals playing musical instruments respectively [3]. The
decoders take these latent representations as input and convert them into log-mel spectro-
grams (DA) and images (DI). Importantly, decoders are capable of taking inputs from the
output of either encoder [3]. A helpful illustration of the architecture employed can be found
in Figure 2.3.

Figure 2.3: CMCGAN architecture. Image taken from [3].

During the training process, both decoders receive inputs from either encoder and gen-
erate outputs corresponding to their respective modalities (i.e. images for DI and spectro-
grams for DA). A discriminator is then employed to determine whether decoder outputs
originated from latents produced by encoders of the same modality (positive instance) or
alternate modality (negative instance) [3]. By optimizing both encoders and decoders to
fool this discriminator, decoder networks learn to produce consistent outputs for both input
modalities [3]. Importantly, this does not imply that the output must resemble the input
from the opposite modality, only that outputs ought to bear significant similarities to one
another.

The network also incorporates cycle consistency loss, the inclusion of which is necessary
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for the generation of meaningful cross-modal outputs. This is achieved by arranging the en-
coders and decoders to convert an input (audio/image) into an intermediate representation
of the other modality. This intermediate representation is then converted back into the orig-
inal modality. The loss measures the discrepancy between the original and reconstructed
output. In order to minimize this loss, the intermediate representation must retain a suffi-
cient amount of information about the original input. Given that the network is trained to
produce comparable outputs regardless of input modality, once trained, the network can be
arranged so that it is able to convert inputs from one modality into the other [3].

In the context of Audio-to-Image conversion, audio encoders and decoders are used to
generate an intermediate audio representation. Subsequently, the audio encoder and image
decoder are used to convert this into an instance of the opposite modality [3]. We refer
readers to Figure 2.3 for a visual overview of this process.

This methodological approach allows for the joint training of both audio encoding and
image generation networks [3]. Doing so allows the networks to provide feedback to one
another during training, and potentially facilitates the learning of more complex relation-
ships that would not have been learnt if the networks were trained in isolation [3]. Results
revealed a modest improvement in adherence to conditioning information when compared
to S2I-C, with a classification accuracy of 76.61% on examples withheld during training [3].
Moreover, a notable improvement to FID and IS scores was also observed. We refer readers
to Table 2.3 for the specific numbers.

2.5.3 Cross Modal Contrastive Representation Learning

In their 2022 work, Chung et al. [4] proposed two significant contributions to the Audio-to-
Image domain. Firstly, they integrated a contrastive loss function into the audio encoder’s
training, encouraging greater separation between embeddings of different audio classes.
Secondly, they incorporated a self-attention module into their generative network to cap-
ture long-range dependencies within images [4]. Notably, their work also increased image
resolution to 256 × 256 × 3 [4].

The contrastive loss function operates on embeddings from both an audio and visual en-
coding network, and serves two purposes. Firstly, it encourages similarity between embed-
dings originating from audio samples of the same category, while promoting dissimilarity
among those from different categories [4]. It is reasoned that by doing so, it becomes easier
for the generative network to distinguish different conditioning instances, thus helping it
produce correctly aligned samples [4]. Secondly, the loss function also pushes associated
audio and image embeddings closer together in space (and vice versa for non-associated
embeddings) [4]. The authors argue that doing so helps encoded visually meaningful infor-
mation into audio embeddings. A technique that has been associated with improved visual
quality in generated samples [14]. A visualization of the training procedure can be seen in
Figure 2.4.

Table 2.3: Image evaluation comparison between state-of-the-art GAN Audio-to-Image
generation networks [4].

Method IS FID
S2I-C 2.315 252.66
CMCGAN 2.883 215.92
Classification Learning + SAGAN 2.757 178.89
CMCRL + SAGAN 5.288 107.26
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The network’s self-attention component draws inspiration from the architecture of SAGAN
[34]. SAGAN incorporates a self-attention function between convolutions to encourage bet-
ter long-range dependencies within the output. By long-range dependencies, we refer to
visual relationships in images that are separated spatially. For instance the relationship be-
tween a shadow and light source. These dependencies play a crucial role in building a
cohesive and meaningful output [35], and ought to be accurately captured.

Results showed that by incorporating the above techniques, the authors were able to
produce conditionally aligned images 89.07% of the time. This is a substantial improvement
from previous works on the same dataset [2][4]. Moreover, generated images displayed
better FID and IS performance than previous models as well, indicating an improvement in
visual quality. We refer readers to Table 2.3 for the exact results

Figure 2.4: Visualization of the cross-modal contrastive loss training procedure. Image taken
from [4].

2.5.4 AudioCLIP

Guzhov et al. [6] recently proposed AudioCLIP, extending the highly expressive Contrastive
Language Image Pretraining (CLIP) [17] network to the audio domain.

CLIP is an encoding model comprised of both a text and image sub-network [17]. The
sub-networks were jointly trained on an extensive dataset of over 400-million image-text
pairs [17], and are responsible for encoding instances from their respective modalities into
embedding vectors. A contrastive loss was applied between sub-networks encouraging the
maximization of cosine similarity between paired text and image embeddings, and mini-
mization of similarity between disparate instances [17]. As with Chung et al. [4], this fos-
tered a strong separation between different groups of embeddings, and a large degree of
similarity between modalities [17].

CLIP’s greatest advantage stems from the scale of its training dataset, allowing the model
to learn highly nuanced and intricate patterns, enhancing the representative power of its
embeddings [17]. Ramesh et al. [14] found these qualities to benefit image generation sig-
nificantly in their Text-to-Image model DALL-E 2. We discus this in more detail in Section
2.6.2.
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Guzhov et al. [6] augment CLIP, introducing an audio encoding sub-network into the
model. They opted to use a pre-trained ESResNe(X)t-fbsp network to achieve this due to
its state-of-the-art performance on two major audio classification datasets (UrbanSound8K
and ESC-50 [36][6]). Notably, ESResNe(X)t-fbsp forgoes the use of log-mel spectrograms
as inputs to the model and instead incorporates trainable time-frequency transformations
due to their increased flexibility [36]. We provide more detail on this in Section 3.2.2. The
author’s then used paired audio-image and audio-text datasets, alongside a contrastive loss
to align the audio-head with CLIP’s text-and-image-heads.

Results showed that the audio-head achieved new state-of-the-art performance on both
ESC-50 and UrbanSound8K [6], improving upon the baseline ESResNe(X)t-fbsp network
[36]. While CLIP proved highly effective for Text-to-Image generation, and strong evidence
exists indicating the effectiveness of contrastively trained embedding networks for Audio-
to-Image generation [4], no one to date has incorporated AudioCLIP’s audio-head into an
Audio-to-Image generation framework.

2.5.5 Audio-to-Image Summary

While this synopsis does not encompass every contribution made within the Audio-to-
Image generation domain, it does offer a curated subset of relevant information. We showed
how Chen et al.’s inaugural work [2] demonstrated the feasibility of the problem, and high-
lighted how log-mel spectrograms could be used to produce conditioning embeddings. We
also showed how CMCGAN’s effective integration of an end-to-end learning approach was
able to enhance conditional adherence and image quality [3]. Building upon this develop-
ment, we then highlighted how Chung et al. [4] illustrated that further improvements could
be realized via the incorporation of attention calculations during image generation and con-
trastively trained embedding networks. Lastly, we noted the relevance of Guzhov et al.’s
[6] work extending CLIP [17] to the audio domain, and cited the potential benefit it could
provide if incorporated into an Audio-to-Image generative framework.

Whilst previous works managed to increase image resolution to 256× 256× 3, the size of
the generated samples remains modest. In addition, conditional adherence and FID scores
leave significant room for improvement. With only 89% of generated samples aligning with
conditioning information in the best approach [4], it is difficult to argue that current methods
have reached an acceptable level of reliability. Furthermore, FID scores below 15 are com-
monly achieved by state-of-the-art Text-to-Image generation models [14][13], highlighting a
noticeable gap in image fidelity.

Finally, all of the studies discussed employed the SubURMP dataset to the generative
problem. This is understandable given the limited amount of publicly available datasets.
However, the dataset lacks diversity and is restricted to audio and image samples of musical
instruments [2]. Therefore, it would be interesting to evaluate performance of these models
on larger scale datasets. We note that other efforts have been made in the space to achieve
this [11], although none have been as large scale as recent Text-to-Image generation models
[12][13][14].

2.6 Text-to-Image

In the following section we highlight several recent innovations within the related field of
Text-to-Image generation. Although not the primary focus of this research project, the do-
main has the potential to offer insights that could be effectively integrated to into Audio-to-
Image generative problems. In light of this, we provide a high-level review of Text-to-Image
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generation models, placing particular emphasis on those contributions that could benefit
the Audio-to-Image generation domain.

2.6.1 GLIDE

GLIDE [15] was one of the first works to incorporate a diffusion model into a Text-to-Image
generative framework. The network incorporates a large transformer model [18] to encode
text into embeddings. Transformer models stack layers of attention calculations on top of
each other, iteratively learning relationships between word tokens [18], and have proven to
be highly effective solutions to natural language processing tasks [37][38]. We refer readers
to the work of Vaswani et al. [18] for more detail.

Whilst the encoder provided rich textual embeddings, encouraging the diffusion model
to produce samples that aligned with this information proved challenging [15]. The au-
thors addressed this by employing several conditioning strategies into the diffusion net-
work. Firstly, they added text and time-step embeddings together, using the combined em-
bedding as input to the network. Recall that diffusion models require knowledge of the
time-step as the amount of noise added to an image is dependent upon this information
(see Section 2.3.3). Whilst this helped, it proved insufficient on its own [15]. To further
encourage alignment between conditions and generated samples, the authors also concate-
nated text embeddings with image features during U-Net attention calculations [15]. This
effectively creates a cross-attention mechanism, allowing the network to continually adjust
its feature representations to align with text conditions. Combining both approaches was
found to help guide the generative process in the direction of conditioning information [15].

In addition, the authors also experimented with both classifier and classifier-free guid-
ance, to further guide the generative process in line with conditioning information [15]. Hu-
man evaluations, the gold standard image generation metric, showed classifier-free guid-
ance to be more effective at producing conditionally aligned samples [15]. Moreover, when
comparing samples produced by GLIDE to GAN alternatives, they found that their ap-
proach significantly improved FID scores [15].

2.6.2 DALL-E 2

Ramesh et al. [14] build upon GLIDE [15], providing three primary contributions to the
domain. Firstly they use CLIP’s text-head as their encoding network [14][17]. As dis-
cussed in Section 2.5.4, CLIP’s contrastive training procedure, coupled with its sizable train-
ing dataset, facilitates the generation of visually meaningful and highly discriminable text-
embeddings [17][14].

The author’s second contribution pertains to the inclusion of an additional diffusion net-
work that they refer to as the prior. The prior serves the role of mapping CLIP audio embed-
dings into the image embedding space [14]. Whilst CLIP’s training procedure encourages
alignment between modalities, the authors argue that they still occupy disjoint sets [14]. By
incorporating a prior network, they reason that more visually meaningful information will
be incorporated into embeddings, improving generative performance [14].

Their third contribution regards image resolution. Previous Text-to-Image models had
struggled to generate high resolution outputs, with GAN approaches not exceeding 256 ×
256 × 3 [39]. These challenges were attributed to a lack of overlapping supports between
image scales [40], which coupled with training instability, made high resolution image gen-
eration with GANs infeasible. Ramesh et al. [14] were circumvented these challenges by
incorporating multiple diffusion super-resolution networks. These were found to be stable
and scalable solutions to the problem, facilitating the generation of 1024 × 1024 × 3 images.
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DALL-E 2’s outputs were more diverse and achieved better FID scores than GLIDE [15],
although were found to be less semantically consistent [14]. We reason that this discrepancy
is likely a result of the diffusion prior for two reasons. Firstly, the randomly sampled noise
that initializes the reverse process will introduce additional variation into embeddings. It is
reasonable to believe that this variation could produce more diverse samples, while simul-
taneously shifting conditions away from their original meaning, reducing semantic consis-
tency. Secondly, if the image embedding space contains more visually meaningful informa-
tion, it is reasonable to believe that the text embedding space may contain more textually
relevant information. If so, mapping text conditions into the image space would produce
more visually meaningful but less textually relevant conditions. Logically, this would be as-
sociated with improved FID scores (image quality) and outputs that were less aligned with
textual information.

2.6.3 Latent Diffusion Models

In their paper, Rombach et al. [12] investigate the potential computational savings that latent
diffusion models could provide. They accomplish this using an auto-encoder to project im-
ages into a lower-dimensional latent space [12]. The network is trained such that its decoder
is able to reproduce images from latent representations while retaining as much information
about the original image as possible [12]. They then train a diffusion model on latent image
representations and use the the decoder to convert its outputs into visually recognizable
images [12].

Their approach yields significant computational benefits, while largely retaining image
quality. Specifically Rombach et al.’s [12] model contained 1.4B parameters, as opposed
to GLIDE’s 6B [15]. Moreover, the authors provide theoretical justification for the appro-
priateness of working with latent representations. They argue that images often contain
high-frequency details that are imperceptible to humans. Likelihood functions are prone
to over-prioritizing this information, leading to networks that allocate significant resources
towards perceptually irrelevant details [12]. By incorporating an auto-encoder, Rombach et
al. remove a portion of these high frequency details, thus saving computational resources
without noticeably affecting image quality [12].

Building upon the foundations laid by GLIDE [15], Rombach et al. [12] also investigate
alternative mechanisms for incorporating conditioning information into the architecture of
the U-Net. Specifically, rather than concatenating text embeddings with image features in
attention calculations, Rombach et al. opt to incorporate a stand alone cross-attention calcu-
lation. In this configuration, image segments are projected into the query vector while text
conditions are projected into key and value vectors [12].

Doing so offers several advantages when compared to GLIDE’s combined calculation
[15]. By conducting a specific cross-attention operations the model can concentrate directly
on the alignment between image features and textual information. In contrast, GLIDE’s
combined approach could make it more difficult to learn these relationships as the network
is simultaneously attempting to learn relationships between image components. It is worth
noting that learning relationships between image components is also highly important. As a
result, Rombach et al. [12] also integrate a self-attention mechanism between image features
into the network.

2.7 Summary

In this Chapter, we provided a comprehensive overview of work relevant to the current
research project. We began with a thorough explanation of the foundational concepts neces-
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sary to engage with this work, then transitioned into a discussion of relevant model archi-
tectures. Important performance measures were discussed prior to detailing recent works
within the Audio-to-Image generation domain. Finally state-of-the-art Text-to-Image gener-
ation models were discussed.

In addition to this, we also highlighted several limitations present within the Audio-
to-Image generation domain. These include small image resolutions, lack of conditional
adherence and image fidelity, alongside the simplistic nature of the SubURMP dataset.

Similar issues with image resolution were observed within the Text-to-Image generation
space [40]. None the less, these were largely mitigated when diffusion models replaced
GANs as the primary generative framework [14][13]. One reason for this can be found in
our discussion on model architecture. Here we noted that GANs can be challenging to train
at scale, due to their implicit likelihood function. In contrast, diffusion models provide a
tractable explicit likelihood objective, lending itself to more efficient scaling [27].

The scalable nature of diffusion models also makes them easier to apply to larger datasets.
Moreover, diffusion models have been observed to achieve significantly better FID scores
than GANs in the Text-to-Image generation domain [14][13]. This makes them an inter-
esting option when considering strategies to improve the aforementioned Audio-to-Image
generation limitations.

Finally, with respect to improving conditional adherence, we noted that the integration
of a cross modal contrastive loss during training led to performance improvements in Chung
et al.’s [4] work. We wonder whether additional performance improvements could be re-
alised if a more expressive cross modal, contrastively optimized encoding model such as
AudioCLIP, is incorporated.
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Chapter 3

Model Architecture, Design and
Justification

3.1 Chapter Overview

The this chapter we provide a detailed breakdown of our proposed Audio-to-Image genera-
tion model. We highlight the design and provide justification for our architectural decisions.
By doing so, it is our intention that readers will gain a comprehensive understanding of the
architectural contributions of this research project.

We break this chapter into two primary sections, each dedicated to an individual sub-
network of the model. In the first section we detail the audio encoding network, responsible
for converting audio samples into embeddings. The second section describes the diffusion
network, that uses these embeddings to condition the image generation process.

Both sections are comprised of three sub-sections. The first provides readers with rele-
vant background information. This is followed by a discussion of the architecture employed,
where we outline pertinent technical aspects of the sub-network. Lastly, we show how each
sub-network is incorporated into the broader Audio-to-Image generative framework. A di-
agram of the overall model can be found below in Figure 3.1.

Figure 3.1: Diagram of the proposed Audio-to-Image generation network architecture.

3.2 Encoding Model

3.2.1 Background

We use AudioCLIP [6], and more specifically its audio-head, as the encoding network in
our conditional generative framework. We opted to do so for several reasons. Firstly, the
successful application of CLIP [17] in DALL-E 2 [14] provides an indicative example of the
potential benefit the network could bring. Moreover, AudioCLIP’s audio-head has demon-
strated state-of-the-art performance on challenging classification tasks [6], further support-
ing its potential utility. Finally, given that the audio-head is contrastively trained alongside
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CLIP’s highly expressive image encoding network, the embeddings produced ought to con-
tain visually meaningful information [6]. The inclusion of which has been associated with
improvements in the visual quality of generated images [22][41][14]. Despite this, no work
has yet investigated the potential benefits the incorporation of AudioCLIP could bring the
Audio-to-Image generation domain.

We do note that DALL-E 2 [14] generated less semantically consistent images than the
GLIDE [15]. It is important to acknowledge that this performance discrepancy can reason-
ably be attributed to DALL-E 2’s integration of a diffusion prior, rather than a limitation of
CLIP itself. We refer readers back to Section 2.6.2 for more detail.

3.2.2 Architecture

In this sub-section, we provide an overview of the relevant architecture incorporated by
AudioCLIP. We do so in more detail than was provided in our literature review given the
different focus of the current section. That being, to provide readers with a detailed, and tech-
nical understanding of the model such that they are well-positioned to engage with future
aspects of this research project.

As mentioned previously, AudioCLIP is comprised of three sub-networks, those being
its text, image, and audio-heads [6]. While text and image-heads do not produce audio
embeddings, they serve an important role in the contrastive training procedure. Hence, we
provide a high level description of both sub-networks below.

The text-head is a modified transformer [18], consisting of 12 layers of stacked attention,
each layer containing 8 attention heads [17]. The image-head employs a ResNet-50 as its ar-
chitectural backbone, and was chosen given its proven capacity to generate powerful image
representations [17].

The most relevant sub-network to the current problem is the audio-head. Employing
a ESResNe(X)t-fbsp model [36], the audio-head was original proposed for environmental
sound classification, where it achieved state-of-the-art performance on numerous bench-
marks [36]. The networks design is predicated upon the ESResNet [5], an illustration of
which can be found in Figure 3.2.

ESResNet applies convolutions (red blocks) followed by a batch normalization layer
(green blocks) to a Short-Time Fourier Transform (STFT) spectrogram [5]. The resulting
information is then passed through four residual layers (blue blocks). Each residual block
consists of a stack of three bottleneck layers (yellow blocks), containing multiple 1D convo-
lutions and batch normalization operations [5]. The output of each residual block is com-
bined with an attention-augmented input (violet blocks). Finally, an average pooling layer
(grey block) is applied, and the output is passed to a fully connected layer (black block) for
classification [5].

The ESResNeXt network improves this design via the integration of cardinality [36].
Originally proposed by Xie et al. [42] cardinality involves stacking several smaller resid-
ual channels on-top of one another and passing a different portion of the input to each.
This strategy allows each channel to focus on a distinct aspect of the input, decentralizing
the learning process and avoiding the potential bottleneck that could occur with one large
channel [42].

The ESResNe(X)t-fbsp model improves this once again by incorporating learnable time-
frequency transformations [6]. Rather than converting audio samples into log-mel spectro-
grams, the network creates its own inputs via a parameterized kernel [6][36]. These trans-
formations are founded upon complex B-spline wavelets [43]. The kernel defining these
wavelets is presented in Equation 3.2, where m represents the order, fb signifies the band-
width, and fc denotes the central frequency. In the trainable formulation, the parameters m,
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Figure 3.2: ESResNet architecture. Image taken from [5].

fb, and fc are associated with learnable weights, determining their respective contributions
to the output [36]. As these weights change, the time-frequency transformation does too.
This allows the network to learn a transformation of the waveform it deems most effective.
Doing so has been found to result in better performance than fixed transformations [36].

K fc
DFT(n) = e−2iπ fcn (3.1)

Km− fb− fc
f bsp (n) =

√
fb

(
fbn
m

)m

e2iπ fcn (3.2)

To better understand why this particular kernel is used, we draw comparison to the
Discrete Fourier Transform kernel employed in the Short-Time Fourier Transform (STFT).
The formula for this kernel is presented in Equation 3.1. By setting m = 0 and fb = 1 in
Equation 3.2, each kernel can be understood as the inverse of the other [36]. Given that
STFT are common time-frequency transformations, this parameterization provides a useful
starting point for training. The authors employ this initialization, allowing the network to
iteratively improve upon a known and effective time-frequency transformation [36].

3.2.3 Implementation

Two pre-trained versions of AudioCLIP are made publicly available on GitHub [44]. We opt
to utilize the partially trained weights rather than the fully trained alternative. The difference
being that the partially trained model freezes the weights of the original CLIP text-and-
image-heads during training [6]. Doing so ensures their highly expressive capabilities are
retained as the model learns, avoiding issues associated with catastrophic forgetting [6][45].

The audio-head is initially pre-trained on an audio classification task, laying the ground-
work for its integration into the AudioCLIP framework [6]. The network’s classification
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head (final layer) is removed, and the penultimate fully connected layer is used to produce
the embedding [6]. This layer contains 1024 output nodes, producing 1024-dimensional em-
beddings, aligning it with the dimensionality of CLIP text-and-image-heads [6][17]. The
audio-head is then contrastively trained against frozen text-and-image heads shifting audio
embedding to align with CLIP’s latent space [6]. Paired audio-image and audio-text datasets
are used to facilitate this [6]. A visual aid illustrating the contrastive training procedure can
be found in Figure 3.3.

Figure 3.3: Illustration of the contrastive training procedure employed by AudioCLIP. Image
taken from [6].

We incorporate this version of the audio-head as the encoding network in our baseline
framework. We refine the network for the current task by conducting several experiments
upon it. These are outlined in Section 4.3.1. Ultimately, AudioCLIP’s audio-head serves the
role of producing the audio embeddings which condition the image generation process.

3.3 Generative Model

3.3.1 Background

Previous Audio-to-Image generation research has primarily employed GANs to synthesize
images [2][4][3]. At the time of writing, no studies have investigated the potential bene-
fits that diffusion models may provide to the generation problem. We deem this to be an
interesting avenue of exploration for a variety of reasons.

One motivation arises form the successful application of diffusion models on Text-to-
Image generation problems [15][14][12]. While only observational, the similarities between
the domains provide good reason to believe that diffusion models could also be incorpo-
rated into Audio-to-Image generation frameworks. If so, it may be possible to realise some
of the same performance improvements diffusion models have provided to Text-to-Image
synthesis tasks. In addition, there are also a number of theoretical justifications making
diffusion models an appealing alternative to GANs.

Firstly, GANs can prove highly challenging to train, requiring careful and considered
hyper-paramater tuning to achieve satisfactory results [46]. Moreover, GANs are known to
experience mode collapse [27][47] whereby they only learn to generate a limited subset of
all possible outputs. This translates to a lack of diversity in generated images. In contrast,
diffusion models have been shown not to suffer from the same limitations [27]. This is
partially due to differences in their optimization criteria [46].

GANs have a non-static optimization criteria, taking the form of a two player adversarial
game upon the value function described in Section 2.3.1. As both the generator and discrim-

24



inator learn, the optimization criteria changes. This inherent fluidity in model focus has the
potential to make it challenging to learn the desired data distribution. In contrast, diffusion
models have a static likelihood objective over the data distribution avoiding this issue [27].
Moreover, they have been shown to generate more diverse samples, addressing issues asso-
ciated with mode collapse, and have proven to be highly scalable with predictable training
behaviour [27][14][13].

These reasons have guided our decision to investigate whether a diffusion model can be
effectively incorporated into an Audio-to-Image generation framework. This said, it is im-
portant to note that diffusion models are not a panacea to the generative task. They can be
highly computationally expensive and slow to inference from due to the sequential nature of
the reverse noising process [26]. This is a serious limitation as this process tends to contain
somewhere in the region of 1000 steps [12][13][14][15]. In addition, diffusion models can
struggle to adhere to conditioning information, often requiring a variety of different tech-
niques to overcome this issue [12][13][14][15][28]. Nonetheless, investigating how they can
be applied to Audio-to-Image generation problems remains an interesting research question.

3.3.2 Architecture

In the following section, we present a detailed overview of the architecture used to construct
our baseline diffusion model. Our network is designed on top an open sourced class condi-
tional diffusion model developed by Capelle [48]. We adapt Capelle’s program, tailoring it
to the Audio-to-Image generation task.

The network is comprised of several different computational components. The first two
of which are responsible for processing conditioning information, while the latter four com-
prise the U-Net. We outline each component below, then show how they are arranged within
the network.

Encoding Layer

The encoding layer is the first component of the network. It takes a 1024-dimensional audio
embedding as input, and projects it into a lower 256-dimensional representation via a leaky
ReLU activated fully connected layer. We opted to follow this approach as it is in line with
Chen et al.’s [2] previous work discussed in Section 2.5.1.

The incorporation of this layer reduces computational complexity via the associated di-
mensionality reduction, and allows the network to learn which components of the audio
embedding are most salient for image generation [2].

Positional Encoding

A positional encoding module follows the encoding layer, and is responsible for the creation
of time-step embeddings. These provide critical information to the diffusion model as the
amount of noise contained within an image is a function of the time-step t (refer to Section
2.3.3 for more detail). We opt to use sinusoidal embeddings to encode time-step information.
Proposed by Vaswani et al. [18], sinusoidal embeddings use sine and cosine functions to
create unique, smooth, and continuous encoding vectors for each time-step [18]. Moreover,
the approach is purely mathematical, making it highly efficient to integrate into the network
[18].
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Down-Sample Blocks

Down-sample blocks are the first component of the U-Net. These reduce the size of an input,
and extract meaningful patterns from within them. Each block begins with a max pooling
kernel, shrinking the dimensionality of the input. By incorporating this function at the start
of the block we improve computationally efficiency, as subsequent operations are performed
upon a smaller input [13].

Following this, two convolutional operations, separated by group normalization layers
and GeLU activations are applied. This aligns with common approaches found within the
literature [12][48]. These operations are responsible for converting the input into meaningful
feature representations. For ease of reference, we refer to this sequence of operations as a
DoubleConv.

Up-sample blocks

Up-sample blocks perform the opposite function, increasing input resolution. To achieve
this they use bilinear interpolations to infer intermediate pixel values based upon the values
of surrounding pixels.

A skip connection is also applied between down-and-up-sample blocks of the same
resolution. This is done by concatenating down-sample outputs to the output of the up-
sampling operation. By doing so, we retain information from the down-sample block that
may have been lost during further processing [7]. A DoubleConv block is then incorporated
to extract patterns from the up-sampled features.

Cross-Attention Blocks

We incorporate cross-attention blocks in accordance with the implementation proposed by
Rombach et al. [12]. We first compute self-attention between image components, allowing
the network to learn the global relationships present in within the image features. Cross-
attention is then calculated between image features and audio conditions, encouraging align-
ment between the two [12].

Bottleneck Layer

The final computational component of the U-Net, in accordance with standard practice, is
the bottleneck layer [26][15][14][12][13]. Here, two sets of DoubleConv’s are applied to the
lowest dimensional representation of the input, further processing it prior to up-sampling.

U-Net

The U-Net is formed by combining the four aforementioned computational blocks. A stack
of three down-sample blocks are used to compresses and transform the original input into
a low-dimensional feature representation. This is passed through the bottleneck layer and
then a stack of three up-sample blocks, producing an output of the same shape as the original
input. Each up-and-down sample block within their respective stacks are separated by a
cross-attention block, continually aligning image features with audio conditions.

Overall Structure

The entire network is formed by combining the U-Net and embedding layers. Audio em-
beddings are first compressed into a 256-dimensional representation via the encoding layer
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and 256-dimensional time-step embeddings are computed via the positional encoding block.
These are then added together, combining their information in line with the approach out-
lined in GLIDE [15]. This information is then passed to the U-Net alongside an input image
with t steps of noise added to it. The U-Net uses this information to produce a feature repre-
sentation of the input containing t − 1 steps of noise. We note that the combined condition-
ing information is integrated multiple times throughout the U-Net, specifically by adding
it to to output of each up-and-down-sample block. The U-Net’s output is then transformed
via a single convolutional operation, producing a 64 × 64 × 3 RGB image. This structure
follows standard practice employed by existing Text-to-Image conditional diffusion models
[12][13][14].

3.3.3 Implementation

The diffusion model described above is trained in accordance with the algorithm detailed
in Ho et al.’s paper, Denoising Diffusion Probabilistic Models [7]. A description of this
procedure is provided below, alongside pseudo-code presented in Figure 3.4 (a).

We first perform a nosing operation whereby an image is selected from the training
dataset, and a time-step t is sampled randomly from a uniform distribution X ∼ U(1, T),
where T denotes the maximum amount of noising steps. We set T = 1000, as is standard
practice [12][13][14]. t steps of noise are then added to the image following the noising
schedule defined in Section 2.3.3. The noised image is subsequently passed to the diffusion
network, alongside a sinusoidal embedding for t, and a paired audio embedding produced
by the encoding network outlined in Section 3.2. The models objective is to predict the noise
added between time-step t − 1 and t.

We evaluate performance by calculating the Mean Squared Error (MSE) between the
predicted noise and actual noise added to the image. Finally a gradient descent step is taken
using the Adam optimizer, updating model parameters iteratively to minimise the MSE loss.

(a) Training algorithm [7] (b) Sampling algorithm [7]

Figure 3.4: Training and sampling algorithms used by our diffusion model. Images taken
from [7].

After training, the network can be used to generate new audio conditioned images.
Again, we follow the sampling procedure outlined by Ho et al. [26]. Pseudo-code for this
algorithm can also be found in Figure 3.4 (b).

Firstly, random noise is sampled from an isotropic Gaussian distribution. This sample
shares the same dimensionality as the desired output (64 × 64 × 3) and is the starting point
for the reverse noising process. The sample is then processed iteratively by the network
T − 1 times, at each point predicting what the image would look like at the prior time-
step. We incorporate conditioning information in the same manner described in training.
By following this sampling procedure, the trained diffusion model iteratively removes noise
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from the sample, generating a structured output that could plausibly have arisen from the
training distribution [26].

We also incorporate classifier-free guidance (CFG) to complement our sampling proce-
dure. This is achieved by generating unconditional samples 20% of the time during train-
ing. 20% is within the range recommended by Ho et al. [28]. Conditioning information is
removed, in line with Ramesh et al’s implementation [14], by setting all values within an
audio embedding to 0. At inference, we generate both an unconditional and conditional
image, and scale the interpolation between the two to produce a final output. We use a scal-
ing parameter of 3 for our baseline model, informed by findings from Ramesh et al. [14]
and Rombach et al. [12]. This approach has been shown to improve image quality and
conditional alignment [28]. We refer readers back to Section 2.3.3 for more detail.

3.4 Summary

In this chapter, we have offered an in-depth explanation of the architecture employed in our
Audio-to-Image generation framework. We highlighted how we use AudioCLIP’s audio-
head as our embedding network, and detailed how its training procedure encourages em-
beddings to exist in CLIP’s semantically rich latent space. Furthermore, we delved into
the structure of the diffusion network, drawing attention to its architecture, alongside the
training and sampling procedures.

We accompanied this description of our framework with justifications for the design
choices made. Specifically, we noted how the incorporation of AudioCLIP could bring ben-
efits realized by CLIP in the Text-to-Image domain over to the field of Audio-to-Image gen-
eration. Moreover, we argued that the constant optimization criteria inherent to diffusion
models can make them better behaved, more scalable, and less prone to mode collapse than
GANs.

This is the first implementation of both AudioCLIP and a diffusion network within the
Audio-to-Image generation literature. We believe that the reasons provided above are suffi-
cient to justify this novel approach.
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Chapter 4

Experimental Design

4.1 Chapter Overview

This chapter details the experimental analyses conducted in this research project. We outline
experimental conditions explicitly, alongside relevant hypotheses. This is done to provide
readers with a comprehensive understanding of the scientific methodologies employed.
Moreover, any interested parties can utilize use this information to conduct their own repli-
cation studies.

To this end, we first elaborate upon the dataset used. This includes an outline of its con-
tents and all pre-processing steps applied. Following this, we discuss the individual exper-
iments conducted. For each, we present information regarding relevant hyper-parameters,
training durations and evaluation procedures. By doing so, we ensure transparency within
our approach, and create a solid foundation for future research.

4.2 Dataset

We opted to use the SubURMP dataset created by Chen et al. to facilitate this study [2].
The dataset is comprised of a curated subset of the larger URMP (University of Rochester
Multi-Modal Music Performance) dataset [49].

The training set provided contains 71,230 audio-image sample pairs, distributed across
musical performances from 13 different instruments. Instruments can be broadly catego-
rized into three groups: strings (violin, viola, cello and double bass), woodwind (flute, oboe,
clarinet, bassoon and saxophone) and brass (trumpet, horn, trombone and tuba) [49]. The
number of samples associated with each instrument is imbalanced, a point we will refer
back to later. A table detailing the exact distribution of observations per class is provided in
Table 4.1.

The corresponding test set contains 9,575 audio-image sample pairs associated with the
same instruments and artists within the training set. Crucially, training and testing sample
pairs are derived from distinct musical performances. This is done to minimize data leakage
between training and testing sets [2].

Audio files are 0.5 seconds long, sampled at a rate of 44 KHz, and stored in WAVE format.
A sliding window of 0.1 seconds is used when converting the original recording into audio
samples. The window defines the amount of information shared between a sample at time t
and t − 1. This parameterization translates to 0.4 seconds of shared audio between adjacent
samples. Images have a native resolution of 1080P (1920 × 1080), and are taken from the
first frame of each video section associated with the paired audio sample.
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4.2.1 Preprocessing

We create five distinct audio sample lengths from the original dataset. Those being 1 second,
2 seconds, 3 seconds, 4 seconds, and 5 seconds. This was done to facilitate the experiment
outlined in Section 4.3.2. We maintain an overlap length of 0.1 seconds from the original
dataset to retain a sufficient number of samples at each length.

Images are down-sampled to a resolution of 64 × 64 × 3 to facilitate efficient training.
Doing so is standard practice in state-of-the-art diffusion models where super-resolution
networks are employed to increase image resolution [12][13][14][15]. We then crop down-
sampled images to ensure instruments and performers occupy the majority of each frame.
This is achieved manually by identifying image regions, on a per instrument basis, within
which relevant information is contained. Doing so works well as performers tend to stay
close to their original location throughout performances. By cropping images we reduce
the presence of irrelevant information that could potentially weaken the network’s perfor-
mance. An illustration of the preprocessed images can be found in Figure 4.1.

Following this, we removed instances at each audio length condition that were absent of
audio signals (i.e. silent). We found good results were achieved when samples with signal
amplitudes below 450 were excluded. We then manually removed samples largely devoid
of audio from the beginning and end of each performance. Information regarding the final
quantity of samples per instrument across audio length conditions is presented in Table 4.1.

In addition to the provided training and testing sets, we also derived a validation set to
measure performance on unseen instances during training. This was achieved by partition-
ing samples from the test set into two halves. We allocated the first half to the validation
set and the second to the test set. Any instances containing overlapping audio signals were
removed to reduce data leakage. Ideally, we would have created testing and validation sets
from distinct musical performances. This was unachievable however, as the original valida-
tion set contained only a single performance per instrument. We could have taken unique
performances from the training set, although doing so would have removed a substantial
portion of our training data. Consequently, we decided to settle for this compromise.

We used the validation set for two purposes. Firstly, its audio samples were used to
condition image generation periodically during training. Doing so allowed us to monitor
the networks progress on unseen instances visually. We also used it to evaluate model per-
formance against the loss function (MSE). This provided us with a numerical measure of
performance on unseen instances during training. No feedback concerning performance on
the validation set was provided to the network during training. In contrast, the test set was
strictly used to condition the generation of new images from the network after the training
procedure.

It is worth noting that the validation and testing sets are relatively small in comparison
to the training set (refer to Table 4.1). Whilst not ideal, this was deemed non-problematic
for two reasons. Firstly, limited intra-class variance exists within the dataset, as images de-
pict the same artists playing the same instruments in slightly different positions. Secondly,
the small scale of the test set facilitated a reasonable sampling duration (approximately 24
hours), given the compute required to facilitate this task.

Figure 4.1: 64 × 64 × 3 images of training examples from the SubURMP dataset [2].
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Table 4.1: Table of class instances across variants of the SubURMP dataset.
Original 1 Second 2 Seconds 3 Seconds 4 Seconds 5 Seconds

Instrument Train Test Train Val Test Train Val Test Train Val Test Train Val Test Train Val Test
Bassoon 1735 390 1322 174 163 1348 171 151 1358 169 148 1357 163 142 1354 158 137
Cello 9800 1030 8549 466 456 8529 460 440 8471 460 439 8529 454 434 8433 448 427
Clarinet 8125 945 6972 455 435 6970 445 425 6950 446 426 6947 442 421 6900 435 414
Double bass 1270 1180 1223 562 552 1214 559 538 1206 555 535 1196 549 529 1185 543 523
Flute 5690 925 5007 445 435 5035 438 418 5033 436 415 5020 429 409 4993 424 404
Horn 5540 525 4613 239 228 4849 232 212 4864 231 210 4843 224 203 4798 219 198
Oboe 4505 390 3730 173 163 3748 172 151 3735 168 148 3745 163 142 3717 158 137
Sax 7615 910 6812 154 143 6832 152 132 6775 152 132 6747 148 127 6643 142 121
Trombone 8690 805 7669 383 372 7879 383 363 7893 378 358 7854 372 351 7789 366 346
Trumpet 1015 520 991 237 226 975 235 215 972 228 207 962 224 204 953 217 197
Tuba 3285 525 3167 239 228 3135 232 212 3124 231 210 3105 224 204 3079 220 199
Viola 6530 485 5940 233 222 5800 226 205 5878 222 201 5849 217 197 5795 214 193
Violin 7430 945 6876 447 436 6905 447 427 6876 442 421 6856 438 418 6791 430 410

4.3 Concurrent Experiments

We begin our investigation by running three experiments concurrently. Those being:

1. Embedding Alignment: A study of how different embedding fine-tuning strategies
affect model outputs.

2. Audio Sample Lengths: An evaluation of the impact varying the duration of audio
samples has on generative performance.

3. Training Duration: An analysis investigating the impact training time has on genera-
tive performance.

We opted to run these experiments concurrently to account for any potential interaction
effects between variables. Doing so provides us with a more holistic understanding of model
performance, improving the robustness of our analysis.

4.3.1 Embedding Alignment

Our investigation into embedding alignment strategies assess how different approaches to
fine-tuning the encoding network affect model performance. This is a critical component of
the Audio-to-Image generation problem, as the embeddings produced by AudioCLIP define
the conditional signal provided to the image generator.

Given Guzhov et al. [6] trained AudioCLIP on relatively small datasets that did not
contain instances from SubURMP, we hypothesize that fine-tuning will be necessary to align
the network with the current task. To validate this assumption we measure the network’s
classification performance, before and after applying three different contrastive fine-tuning
strategies, those being:

1. Aligning audio embeddings with text embeddings.

2. Aligning audio embeddings with embeddings produced by a frozen image-head.

3. Aligning audio embeddings with embeddings produced by a trainable image-head.

Text-aligned fine-tuning is achieved by first generating an audio and text embedding
from the relevant AudioCLIP sub-networks. The audio-head receives an audio sample of
length l as input, while the text-head produces its embedding from the associated instru-
ment name. We freeze the text-head during training and contrastively align the audio-head
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with it. More specifically, the audio-head is optimized to align its embeddings with text
embeddings for the instruments being played. Moreover, the audio-head is simultaneously
trained to distinguish audio embeddings from text embeddings produced by other instru-
ments.

This formulation presents a relatively simple learning task, given the constant nature of
text embeddings (i.e. only one text embedding is produced per instrument category). While
mapping all audio embeddings for a given instrument to a single text embedding may not
be possible, it should be feasible to map them to a similar region of the latent space. Doing so
should produce separable groups of audio embeddings defined by the source instrument. If
so, it should be relatively easy for the generative model to identify instruments based upon
their embeddings, and condition the generative process accordingly. This said, the approach
does have an associated drawback. Namely, by aligning audio and text embeddings, we
may not encode a sufficient amount of visually meaningful information into our conditions.
This could potentially lead to the generation of lower quality images.

Considering this, we also align audio embeddings with those produced by a frozen image
head. We use the term frozen to reference the fact that the image-head weights remain fixed
during fine-tuning. In other words, they remain identical to the weights learnt by CLIP [17].
In this implementation the audio sub-network receives an audio sample of length l, while
the image sub-network receives a 64 × 64 × 3 image from the training set. Here, audio em-
beddings are aligned with image embeddings from their training sample pair, and shifted
away from image embeddings associated with other instruments. As discussed previously
(Section 3.2.2), AudioCLIP’s image-head has demonstrated a capacity to produce highly vi-
sually meaningful embeddings [17]. As such, we reason that this alignment process will
result in more visually relevant information being encoded into audio embeddings. How-
ever, we also hypothesize that this may be a more challenging task to learn, as unlike text
embeddings, image embeddings vary within each instrument class. Moreover, whilst ex-
pressive, the image-head, was not trained on SubURMP, thus its representations may not be
optimal.

This directs us to our final alignment strategy. In this case, we align audio embeddings
with a mutually trained image-head. By back-propagating gradients from both image and
audio sub-networks we allow both heads to be fine-tuned simultaneously. We expect this
to improve the image-head’s ability to represent images within the SubURMP dataset. This
said, the mutual training of both heads may also result in the loss of some visually expressive
information, as image representations are also shifted to align with audio embeddings.

We train AudioCLIP for five epochs with a batch size of 10 across all fine-tuning strate-
gies and audio sample lengths discussed in Section 4.2.1. We further apply stratified sam-
pling to address the class imbalance present in the dataset. During training we optimize
AudioCLIP by minimizing the contrastive loss outlined in Section 3.2.2. After fine-tuning,
we use learnt audio embeddings as conditioning information for the diffusion image gener-
ator. We train the baseline model outlined in Section 3.3.2 for 100 epochs with a batch size of
12, saving model checkpoints every 10 epochs. We employ this hyper-parameter configuration
throughout all of our experiments.

Model performance is evaluated under three conditions. Firstly, we compare the clas-
sification accuracy of each AudioCLIP variant on the SubURMP dataset. This is achieved
by calculating the dot product similarity between a given audio embedding and text/image
embeddings for each instrument category. The highest dot-product is taken as the predic-
tion. Doing so accords with how previous work has measured the stand-alone performance
of their audio encoding network [2][4]. We evaluate image quality using the Frechet In-
ception Distance (FID)[31] between generated samples and training/testing examples. We
further evaluate the extent generated images adhere to conditioning information by incor-
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porating an additional image classifier. The classifier is a CNN that is trained to predict the
instrument contained within a given image, and achieved 100% accuracy on its testing set.
For more details on this approach, we refer readers back to Section 2.4.3.

4.3.2 Sample Lengths

Our next concurrently run experiment evaluates model performance across varying audio
sample lengths. Previous work by Wen et al. [50] found that as audio sample lengths in-
crease, generated images generally converge upon a correctly aligned output. Their inves-
tigation evaluated performance on a paired speech-face dataset, employed a GAN image
generator, and considered audio sample lengths of 1, 2, 3, 5 and 10 seconds. We want to
know if the same effect can be replicated on the SubURMP dataset with a diffusion image
generator.

Our experimental setup faced limitations due to computing constraints. Specifically, we
were unable to evaluate 10 second samples, as the associated WAVE files were found to con-
sume an excessive amount of storage, and necessitate an infeasible amount of processing
time. As a result, we opted to explore 1, 2, 3, 4, and 5 second sample lengths. Moreover, we
believe excluding 10 second samples from our experiment is a reasonable decision irrespec-
tive of operating constraints. This is predicated upon the limited differences observed in
generated images conditioned upon 5 and 10 second audio samples present in Wen et al.’s
[50] work.

We generate audio embeddings for all sample lengths using the three fine-tuned Audio-
CLIP variants described in the aforementioned experiment. The diffusion model outlined in
Section 3.3 is employed as the image generator. We use FID to measure image quality, and
quantify conditional adherence with the instrument classifier outlined in 4.3.1.

4.3.3 Training Duration

Our final concurrent experiment evaluates the effect training time has on generated samples.
We do so by training the baseline conditional diffusion model for 100 epochs, saving weights
every 10. In total, we train 15 diffusion models, one for each sample length and fine-tuning
strategy combination. We generate images for each variant by conditioning upon audio
samples contained within the test set. We conduct 10 sampling runs for each variant, corre-
sponding to each of the saved weights. This translates to 150 sampling iterations. Finally,
we evaluate performance by measuring FID scores and instrument classification accuracy
on generated images. This is done in the same manner described above in Section 4.3.2.

4.4 Classifier-Free Guidance

While the first three experiments are run concurrently for increased robustness, computing
constraints made doing so impractical for future experiments. As such, we opted to evaluate
the effect of classifier-free guidance (CFG) using embeddings produced by the four-second
text-aligned AudioCLIP variant. These embeddings were found to elicit optimal conditional
adherence and strong FID scores (see Sections 5.2.2 and 5.2.3). Given CFG is predominantly
used to improve conditional alignment (i.e. constancy between generated images and condi-
tioning information) [28], it made sense to conduct this experiment with the best performing
model upon this metric.

As a reminder, CFG, outlined in Section 2.3.3, has shown significant potential for im-
proving the semantic alignment between generated samples and conditioning information
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[28]. The process involves training a diffusion model to generate both conditional and un-
conditional images. This is achieved by removing conditioning information p-proportion
of the time during training. When sampling, the model produces both a conditional and
unconditional image. A linear interpolation is taken between the unconditional and con-
ditional images and scaled by a parameter s ≥ 1. This pushes the unconditional sample
toward and beyond the conditional representation, and has been shown to produce a more
conditionally faithful image [14][28]. There is however no consensus within the literature
for what constitutes an optimal value for s. Most popular Text-to-Image diffusion models
employ relatively low values (e.g. s ≤ 5) [12][14], however, some works have found higher
values to produce better results [13]. As such, we chose to investigate what effect varying
the scaling parameter s would have on the current problem.

To evaluate this, we trained two diffusion models with embeddings from the four sec-
ond text-aligned AudioCLIP model. We change only the probability of learning to generate
unconditional samples p in each model. In the control we set p = 0 such that the model
never generates unconditional samples. In the CFG enabled case, we set p = 0.2, which is
within the range recommended in the original paper [28]. We then sample from both mod-
els, conditioning upon test set audio embeddings. We do so six times in the CFG enabled
case, varying s each time. We specifically evaluate CFG at s = 1, 3, 5, 7, 9, 11. These values
were chosen to explore a range of both low and high scaling parameters. We once again use
FID scores and instrument classifier accuracy to evaluate model performance.

4.5 Projection Mechanism

In our final experiment we investigate two different techniques for reducing the dimension-
ality of audio embeddings. We specifically compare the performance of a learnable leaky
ReLU activated fully connected layer to the results achieved via Principal Component Anal-
ysis (PCA).

Our encoding model produces high dimensional (1024 dim) embeddings [6]. It is com-
mon practice within the literature to reduce these, as doing so can lower the compute re-
quired for training, and allow the generative model to distil pertinent information [14][12][2].
Fully connected approaches are common within the Audio-to-Image generation domain
[2][51], although PCA reduction has yet to be evaluated. We consider doing so reasonable
given the successful application of PCA reduction in DALL-E 2 [14].

We evaluate the two conditions using four second text-aligned audio samples, and train
the models for 100 epochs, varying only their projection mechanisms. Once again, FID and
instrument classification accuracies are used to evaluate the quality of generated samples
conditioned upon test set audio embeddings.
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Chapter 5

Results and Discussion

5.1 Chapter Overview

In this chapter, we present the findings associated with the experiments detailed in Chapter
4. To begin, we analyse the results of those experiments run concurrently. This is followed
by the results associated with our studies into classifier-free guidance (CFG) and projec-
tion mechanisms. We empirically analyse our results and discuss their relevance within
the broader context of the domain. By doing so, we provide insights into why they were
observed and their implications for the field of Audio-to-Image generation.

5.2 Concurrent Experiments

In this section, we describe the results of our concurrently run experiments. We structure
this by order of evaluation criteria, and discuss all three experiments collectively. Present-
ing information in this manner makes the most sense as these results must be considered
holistically.

The three experiments investigated the conjoint effect different fine-tuning strategies, au-
dio sample lengths, and training durations have on model performance. Three fine-tuning
strategies were considered, whereby AudioCLIP’s audio-head was aligned with either its
text-head, frozen image-head, or mutually trained image-head. We refer to these strategies
as text, frozen and mutual respectively. Our analysis of audio sample lengths considered the
effect different audio sample durations have on model performance. Those durations being
1, 2, 3, 4 and 5 seconds. Finally, to assess how training duration impacts performance, we
generated images conditioned upon withheld audio samples for each model using weights
saved every 10 epochs throughout the 100 epoch training duration.

We evaluated model performance on upon three criteria. The first, pertaining only to
the fine-tuning study, measured the classification performance of the fine-tuned AudioCLIP
models on the SubURMP dataset. The second metric uses a pre-trained instrument classifier
to measure how well generated samples align with conditioning information. Finally, we
incorporated FID scores as a quantitative measure of image quality.

5.2.1 AudioCLIP Classification Performance

Given each AudioCLIP sub-network produces an embedding rather than a classification
prediction, we are forced to diverge from the conventional evaluation of classification al-
gorithms. We opt to employ AudioCLIP’s querying functionality as a proxy. This was de-
scribed briefly in Section 4.3.1, although in the interest of clarity, we provide more detail
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here.
Querying is achieved by first deriving an audio embedding for a given sample. A query-

set is then produced, containing a list of embeddings from the alignment modality (either
text or image). Each embedding within the query-set is associated with a different instru-
ment class. In the text-aligned case, this translates to a set of embeddings where each is as-
sociated with a different instrument name. In the image-aligned case, the query-set consists
of the image embedding for the truly associated image, and embeddings from a randomly
selected instance from each of the other instrument classes. The dot product between the
audio and all query embeddings is then calculated, measuring their similarity. The query
embedding associated with the largest dot product is taken as the model prediction.

We provide the raw querying accuracies in Table 5.1, and an associated visualization in
Figure 5.1.

Figure 5.1: AudioCLIP testing accuracy by epoch.

Zero-shot performance

The largest performance discrepancy present in the results, occurs prior to any fine-tuning
at epoch 0. This quantifies AudioCLIP’s zero-shot performance on SubURMP, and was cal-
culated to validate the necessity of applying fine-tuning (see Section 4.3.1, Paragraph 2). By
zero-shot, we refer to the model’s capacity to generalize to instances outside of its training
dataset [14]. We note that both image-aligned models can be considered identical at epoch
0, given no training has occurred.

Under these conditions, we see that text-alignment elicits substantially better perfor-
mance than image-alignment. Specifically, achieving a classification accuracy of 53% with 1
second audio samples, compared to the image variants 10%. We note that the image variants
performance is only 2.3% better than random guessing under stratified sampling conditions.

A monotonic increase in classification accuracy is observed for all models as audio sam-
ple lengths increase. This improves text-aligned performance to 68% and image-aligned per-
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formance to 12% with five second samples. We found these improvements to be associated
with strong, positive and significant correlations at α = 0.05 for both querying variations.
Specifically, text-aligned querying returned the following statistics (R = 0.88, p = 0.048, n =
5), while image-aligned querying returned (R = 0.85, p = 0.002, n = 10). The lower p-value
in the image-aligned case is a result of the larger sample size. We emphasize that the com-
parable R values between tests are reflective of the similar proportional increases observed,
not the magnitude of those increases.

While both image models can be considered identical at epoch 0, there exists a small
disparity in their performance when three and four second samples are used (see Table 5.1).
We attribute this to the variance introduced via the random selection of images necessary to
facilitate dot product calculations. Whilst not ideal, this should not have a significant impact
on our analysis given the resounding similarity between instances of the same class.

Taken collectively, results indicate that zero-shot text-aligned querying is substantially
more effective than image querying. We reason this discrepancy is a result of two factors.
Firstly, the consistent intra-class text embeddings remove a source of variation inherent to
image querying. Secondly, images within the SubURMP dataset bear significant resem-
blance to one another, irrespective of the instrument being played. For instance they all
contain blue backgrounds and have an individual occupying the center of the frame (see
Figure 4.1). This similarity may make it challenging for the image-head to separate instru-
ments within the latent space zero-shot. If so, querying would necessarily become more
challenging.

In addition, it was found that increasing audio-sample lengths universally improves
zero-shot performance. We posit that the addition information longer sample lengths con-
tain, provide are a plausible explanation for this trend. Finally, we note that the classification
performances achieved highlight the need for fine-tuning. Previous works have achieved
near perfect accuracies (e.g. 99.99% [4]) on this metric. It is therefore, critical that we find a
means of improving performance, to place our work on par with these benchmarks.

Table 5.1: AudioCLIP testing classification accuracy.
Time Alignment 0 1 2 3 4 5
1 second Frozen 0.10 0.91 0.92 0.85 0.91 0.90
2 second Frozen 0.11 0.90 0.88 0.90 0.88 0.89
3 second Frozen 0.11 0.89 0.89 0.90 0.86 0.86
4 second Frozen 0.11 0.82 0.90 0.91 0.89 0.90
5 second Frozen 0.12 0.92 0.88 0.86 0.86 0.85
1 second Mutual 0.10 0.94 0.90 0.82 0.83 0.84
2 second Mutual 0.11 0.87 0.89 0.78 0.88 0.87
3 second Mutual 0.12 0.87 0.90 0.89 0.80 0.89
4 second Mutual 0.12 0.81 0.79 0.84 0.85 0.76
5 second Mutual 0.12 0.86 0.86 0.84 0.87 0.79
1 second Text 0.53 0.99 0.99 0.99 0.99 0.99
2 second Text 0.63 0.99 0.99 0.99 0.99 0.99
3 second Text 0.66 0.99 1.00 0.99 0.99 0.99
4 second Text 0.67 0.99 0.97 1.00 0.99 1.00
5 second Text 0.68 0.99 0.99 1.00 0.99 0.99
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Fine-tuned performance

By fine-tuning AudioCLIP, we were able to achieve substantially better results. Specifically,
the text-aligned model achieved near-perfect classification accuracies (99%) on withheld
data after only one training epoch. This was observed over all sample lengths. Performance
further improved to 100% when trained for longer durations on increased samples lengths
(3, 4, and 5 seconds). This said, the associated correlation between audio sample lengths and
text-aligned accuracy narrowly precluded significance at α = 0.05, returning the following
results: (R = 0.87, p = 0.058, n = 5).

Both image-aligned models also realised substantial improvements to their zero-shot
performance post fine-tuning. Specifically, the best performing frozen model classified 92%
of test instances correctly when two and five second audio samples were used. The mutu-
ally aligned network improved this slightly, classifying 94% of instances correctly with one
second audio samples. No significant correlation between sample length and classification
performance was found for either model at α = 0.05.

We found a highly significant relationship between optimal training time and audio sam-
ple lengths across all models (R = 0.63, p = 0.01, n = 15). Thus suggests that a moderately
strong, positive linear relationship exists between the two variables. In other words, longer
audio sample lengths generally require longer training durations to achieve optimal results.

We note that the classification performances of image-aligned models are more varied
across training epochs than the text-aligned model. This could indicate that image-aligned
fine-tuning is less robust, but could equally be attributed to the necessarily stochastic na-
ture of image evaluation. We would have liked to run more experiments to answer this
statistically; however, computing limitations made this infeasible.

These results support the conclusion that fine-tuning AudioCLIP is necessary to achieve
good performance on the SubURMP dataset. Moreover, they show that text-aligned perfor-
mance continues to surpass image-aligned performance even after fine-tuning. As before,
we reason that the static nature of intra-class text embeddings makes it an inherently eas-
ier task than image-alignment. This said, fine-tuned image-aligned models performed well,
with little discrepancy between frozen and mutual training strategies. They were, however
observed to exhibit greater variation in performance across training durations. This could
suggest that image-alignment is inherently less robust, however, our result do not allow us
to make any firm conclusions.

We note that no significant relationships were found between audio sample lengths and
classification performance on fine-tuned models. This may suggest that the additional infor-
mation provided by longer sample lengths is less useful after fine-tuning. That said, we are
working with a particularly small sample size which could make detecting these patterns
difficult. It would be worth while for future research to conduct a similar analysis with
additional samples to help address this question.

5.2.2 Generated Sample Classification Performance

In this section, we shift focus to evaluating the extent to which generated images align with
conditioning information. We refer to this as conditional adherence. To do so, we train fif-
teen versions of the diffusion model described in Section 3.3, each conditioned upon audio
embeddings from a unique fine-tuning, sample length combination. We reiterate here that
embeddings are produced by AudioCLIP’s audio-head. Text-and-image-heads were only
used for the purposes of fine-tuning.

After training we generate images from each diffusion model, conditioning upon test
set audio samples. Each sample is converted into an embedding via the same fine-tuned
audio-head used during the diffusion models training procedure. We measure conditional
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adherence by incorporating a pre-trained CNN capable of recognising instruments within
images with 100% accuracy on unseen instances (See Sections 2.4.3 and 4.3.1 for more de-
tails).

Model level performance

Analyzing the results displayed in Figure 5.2 reveals several interesting trends. Firstly, im-
ages generated by models conditioned upon text-aligned audio embeddings tend to be more
aligned with conditioning information than those conditioned upon image-aligned embed-
dings. This is evidenced by the higher instrument classification accuracies shown in text-
aligned cases (see Table 5.2 for exact values). The only exception to this rule being when
five second audio samples are used. Moreover, results show that the best performing model
was trained using four second text-aligned embeddings for 70 epochs, yielding a classifica-
tion accuracy of 68.66%. Notably this is lower than state-of-the-art GANs, the best of which
achieves 89% on the same metric.

In addition, results indicate that models conditioned upon frozen image embeddings
tend to outperform those conditioned upon mutually aligned embeddings. The only excep-
tion to this being observed with three second audio samples.

Figure 5.2: Instrument classification accuracy by experiment. Numbers above bars report
the best performing epoch.

With regard to sample lengths, all variations (text, frozen, mutual) show a generally
improving trend in conditional adherence as audio sample lengths increase. This is most
pronounced in image-aligned models, with both variants achieving their best performance
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when conditioned upon five-second samples (frozen = 68.4%, mutual = 58.01%)

Optimal training durations vary across different models, with some reaching peak per-
formance after only 20 epochs, and others requiring 100 (see Table 5.2). This said, perfor-
mance typically plateaus after 20 or 30 epochs, after which classifier accuracies oscillate,
changing by only a few percentage points in either direction.

Table 5.2: Instrument classifier results by epoch.
Time Alignment 10 20 30 40 50 60 70 80 90 100
1 Frozen 17.76% 38.68% 38.19% 38.73% 37.74% 38.88% 38.83% 38.11% 38.29% 38.38%
2 Frozen 19.72% 30.29% 42.66% 41.17% 42.71% 42.58% 42.61% 42.74% 41.22% 41.96%
3 Frozen 28.91% 36.18% 23.53% 23.35% 23.64% 24.08% 24.16% 23.95% 23.14% 23.27%
4 Frozen 29.01% 52.05% 37.58% 37.13% 38.69% 37.87% 37.34% 38.43% 37.74% 37.64%
5 Frozen 37.21% 24.50% 68.08% 67.35% 66.92% 67.32% 67.22% 66.32% 67.49% 68.40%
1 Mutual 13.99% 34.81% 34.39% 35.11% 34.47% 33.53% 33.41% 34.29% 35.01% 34.57%
2 Mutual 22.40% 46.44% 40.50% 39.52% 39.39% 39.26% 38.65% 39.93% 39.75% 40.47%
3 Mutual 21.74% 48.94% 43.82% 45.12% 44.13% 44.70% 44.49% 43.90% 44.94% 43.53%
4 Mutual 31.16% 48.59% 45.97% 45.20% 45.68% 45.57% 45.36% 44.88% 45.54% 45.65%
5 Mutual 22.91% 47.09% 57.83% 59.01% 58.34% 58.34% 57.77% 58.45% 58.96% 57.85%
1 Text 16.97% 34.98% 46.05% 47.08% 46.51% 47.06% 47.15% 47.06% 46.86% 46.32%
2 Text 26.97% 32.22% 55.18% 54.46% 57.08% 57.01% 56.49% 56.70% 54.62% 55.41%
3 Text 34.08% 56.81% 54.75% 55.66% 55.12% 55.14% 55.58% 55.35% 55.48% 54.34%
4 Text 43.03% 63.18% 67.02% 67.63% 67.68% 68.13% 68.66% 67.23% 67.79% 66.89%
5 Text 21.26% 33.32% 56.42% 55.77% 56.10% 56.66% 56.53% 56.23% 55.77% 56.48%

To contextualize these findings, we argue the following. Firstly, generative models con-
ditioned upon text-aligned audio embeddings tend to generate more conditionally faith-
ful samples. This is likely due to the consistent intra-class text embeddings used in the
text-aligned fine-tuning process, making it easier to separate audio conditions into distinct
regions of the latent space. By doing so, it becomes easier for the generative network to
interpret the contents of the embedding.

Findings also indicate that diffusion models trained on frozen image-aligned embed-
ding, tend to align with conditioning information better than those conditioned upon mutually-
aligned embeddings. A plausible explanation for this is that by freezing image-head weights
during fine-tuning, we maintain the full expressiveness of the image-head. In contrast when
image-head gradients are enabled, the image-head shifts to align with audio embeddings.
By doing so, some of the visual expressiveness of the image-head may be lost in the process.

We noted that performance generally improves for all models when audio sample lengths
are increased. This trend being most clearly exhibited by diffusion models conditioned upon
image-aligned audio embeddings. We attribute this trend to the additional information pro-
vided by longer audio samples. The disproportionate benefit realised by image-aligned vari-
ants may be due to the increased complexity of the task, whereby the additional information
may prove more beneficial. It would be interesting to investigate whether even longer au-
dio samples could provide further benefit as performance did not appear to plateau in either
image-aligned case.

Interestingly, the advantages provided by longer audio samples were not reflected in
the previous experiment when measuring fine-tuned AudioCLIP classification accuracies
(see Section 5.2.1). Moreover, AudioCLIP classification accuracies were considerably more
favourable than the observed conditional adherence scores. This implies that the classifica-
tion performance of the embedding network, is not necessarily indicative of performance on
the downstream generative task. This is particularly noteworthy as previous research has
often used to measure to evaluate the quality of their encoding netowkrs [2][4].
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Instrument level performance

To gain a more complete understanding of the diffusion model’s adherence to conditioning
information, we computed a class level confusion matrix with our best performing model.
That being, the diffusion generator trained for 70 epochs conditioned upon four second text-
aligned embeddings. Readers can find the confusion matrix in Figure 5.3.

The matrix is best read from left to right. Values in each row represent predictions made
by the instrument classifier for each true image label. For instance, the bottom right-most
value provides the proportion of violin images that were generated from bassoon audio
samples. Values along the diagonal show the proportion of correctly aligned samples. A
well performing model would have high values along the diagonal and low values else-
where.

We identified three performance categories based upon the proportion of correctly clas-
sified instances for each instrument. Those being Poor (≤ 0.3), Moderate (0.3 < 0.9), and
High (≥ 0.9). The list of instruments attributed to each category is presented below:

• High: Viola, Tuba, Trombone, Double bass.

• Moderate: Bassoon, Cello, Clarinet, Flute, Viola, Trumpet.

• Poor: Horn, Oboe, Saxophones.

An interesting trend is shown on the confusion matrix for those instruments in the poorly
aligned category. Specifically, we notice that oboes and saxophones are frequently misclas-
sified as flutes. This indicates that oboe and saxophone conditions frequently result in gen-
erated images of flutes. Importantly, all three of these instruments are woodwinds [49].
Furthermore, in Figure 5.4, we can see that their associated images appear visually similar
to one another. They are all long and thin, held is comparable ways, and being blown into
by the performer. Similarly, horns were routinely misclassified as either trumpets or saxo-
phones, both of which are made from brass. Taken collectively, this indicates that whilst the
model makes mistakes, it does so in an understandable manner, confusing instruments that
share significant similarities to one another.

5.2.3 FID Scores

The final aspect of our concurrent analysis regards FID scores. These allow us to quantify
the visual quality of generated samples (see Section 2.4.2). We evaluate generated images
against true training and testing images and present results in Tables 5.4 and 5.5 respectively.
We note that images within the training and testing datasets are relatively similar to one
another. This is an inherent limitation of the dataset used and is discussed in more detail in
Chapter 6.

Results indicate that the best testing FID scores were achieved by the diffusion model
conditioned on three second, mutually-aligned audio embeddings. Specifically, eliciting a
FID score of 75.32. This is markedly better than existing GAN solutions on the same dataset.
The best of these alternatives, created by Chung et al. [2], achieved 107.26. See Table 5.3 for
more detail. We note that Chung et al.’s model generated larger resolution images than ours
(256 × 256 × 3), limiting the conclusions that can be drawn from this. That said, our model
improves FID scores by over 70% compared to S2I-C [2], the only other work generating
64 × 64 × 3 images.

Generated images conditioned upon four and five second text-aligned embeddings also
returned impressive FID scores, precisely achieving 76.11 and 75.11 respectively. This sug-
gests that comparable levels of image quality can be realised with both conditioning ap-
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Figure 5.3: Confusion matrix of instrument classifier results on 4 second text conditioned
generated images. Values are proportions.

proaches. The same cannot be said for frozen image embeddings. The best of which, condi-
tioned on 1 second audio samples, achieved an FID score of 84.94.

Networks conditioned upon text-aligned and frozen image-aligned embeddings display
a generally improving trend in FID scores as audio sample lengths increase. The same trend
is not observed for diffusion networks conditioned upon mutually-aligned embeddings.
More precisely, mutually conditioned models show a worsening in FID performance when
sample lengths exceeded three seconds. These trends can be best observed in Figure 5.5.
Given the limited number of samples, it is difficult to determine how representative this
trend is. Nonetheless, it may imply that mutually-aligned embeddings are associated with
less predictable performance than embeddings fine-tuned against a fixed alignment head.

With regard to training time, better FID scores are generally associated with lower epoch
counts for both image-aligned variants. In contrast, models conditioned upon text-aligned
embeddings appear to require slightly more training durations to achieve maximum perfor-
mance.

In line with expectations, training FID scores were found to be consistently better then
testing FID scores. This suggests that the generated images produced bear greater resem-
blance to the training distribution. Nonetheless, the difference between scores are relatively
small, with little variance observed. Specifically, the mean difference between measures was
15.58 units with an associated standard deviation of 4.64.

In summary, our models outperformed GANs with regard to FID. We preface this find-
ing by noting that, state-of-the-art GANs generate higher resolution 256 × 256 × 3 images
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(a) Oboe (b) Saxophone (c) Flute

Figure 5.4: Poorly semantically aligned image examples from the pre-processed SubURMP
dataset.

Table 5.3: FID comparison between state-of-the-art GAN Audio-to-Image generation net-
works [4].

Method FID
S2I-C 252.66
CMCGAN 215.92
CMCRL + SAGAN 107.26
Best Diffusion 75.32

[4]. As a result, it is not entirely fair to compare the two measures. In Chapter 6 we describe
how future work could consider employing super-resolution networks to address this con-
cern. This said, the original S2I-C network [2] did produce 64 × 64 × 3 samples, and our
network vastly outperforms this approach (see Table 5.3). We reason that this improvement
is due to FID’s propensity to reward both high fidelity and diverse image samples [28].
GANs are known to suffer from mode collapse [27], whereby they only learn to generate
samples from a limited subset of the output distribution. In short, samples from GANs can
lack diversity. In contrast, diffusion models do not suffer from the same problem, learning
to produce more diverse samples, potentially helping improve FID scores [27].

Our best performing model utilized 3 second mutually-aligned embeddings, although
this was closely followed models conditioned upon 4 and 5 second text-aligned embed-
dings. Models conditioned upon text-aligned embeddings generally showed greater consis-
tency in FID scores across embedding lengths, indicating they may be a more robust solution
to the problem.

Models conditioned upon frozen image embeddings achieved the least satisfactory FID
scores. We believe this performance gap could be attributed to the image-head not being
sufficiently aligned with the SubURMP dataset. By fine-tuning image embeddings, we rea-
son that the image-head becomes better able to represent details in SubURMP images. This
would explain the better results observed when mutually-aligned conditions were used.
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Figure 5.5: FID scores on testing instances. Numbers above bars represent the best perform-
ing epoch.

Table 5.5: FID testing scores by epoch.
Time Alignment 10 20 30 40 50 60 70 80 90 100
1 Frozen 138.93 84.94 95.18 96.22 96.73 96.63 96.63 96.73 96.22 95.18
2 Frozen 124.92 114.56 105.21 107.26 106.95 107.86 107.86 106.95 107.26 105.21
3 Frozen 125.97 98.69 109.42 111.11 109.58 110.92 110.92 109.58 111.11 109.42
4 Frozen 123.28 91.69 99.80 99.59 99.14 98.89 98.89 99.14 99.59 99.80
5 Frozen 121.74 133.09 89.07 90.34 91.02 89.71 89.71 91.02 90.34 89.07
1 Mutual 150.34 83.04 90.86 90.45 91.12 90.87 90.87 91.12 90.45 90.86
2 Mutual 119.08 86.24 84.08 80.85 81.10 82.42 81.95 82.47 80.63 82.24
3 Mutual 121.56 75.32 103.08 100.71 100.92 101.62 101.62 100.92 100.71 103.08
4 Mutual 119.21 99.74 89.34 91.12 89.56 91.80 91.80 89.56 91.12 89.34
5 Mutual 137.66 97.87 94.84 95.83 96.32 94.78 94.78 96.32 95.83 94.84
1 Text 131.73 145.48 98.99 99.34 99.72 101.01 100.65 100.47 99.70 99.23
2 Text 137.28 113.99 97.05 97.18 97.25 96.08 96.08 97.25 97.18 97.05
3 Text 114.23 81.47 97.04 95.94 94.88 96.38 96.38 94.88 95.94 97.04
4 Text 127.46 95.44 77.57 76.11 77.48 78.69 78.69 77.48 76.11 77.57
5 Text 119.48 99.66 75.51 75.92 76.49 77.46 77.46 76.49 75.92 75.51
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Table 5.4: FID training scores by epoch.
Time Alignment 10 20 30 40 50 60 70 80 90 100
1 Frozen 125.33 73.47 80.73 81.28 82.09 81.49 81.49 82.09 81.28 80.73
2 Frozen 108.51 100.14 90.15 91.98 91.28 92.25 92.25 91.28 91.98 90.15
3 Frozen 115.86 79.44 92.56 94.96 93.17 94.34 94.34 93.17 94.96 92.56
4 Frozen 106.08 78.95 84.21 83.64 83.70 83.38 83.38 83.70 83.64 84.21
5 Frozen 109.25 114.10 80.17 81.54 81.43 81.13 81.13 81.43 81.54 80.17
1 Mutual 133.57 69.27 75.51 74.62 75.38 75.16 75.16 75.38 74.62 75.51
2 Mutual 104.75 70.92 64.58 61.75 61.64 63.38 62.24 63.02 61.22 62.80
3 Mutual 104.87 53.20 86.47 84.72 85.26 85.64 85.64 85.26 84.72 86.47
4 Mutual 101.84 81.37 69.25 71.17 69.09 71.84 71.84 69.09 71.17 69.25
5 Mutual 123.60 79.56 75.37 76.15 76.48 75.22 75.22 76.48 76.15 75.37
1 Text 115.52 130.47 81.55 81.87 82.11 83.30 82.93 83.28 82.53 81.68
2 Text 118.73 100.88 82.10 82.38 82.75 81.24 81.24 82.75 82.38 82.10
3 Text 96.35 62.56 80.31 79.81 78.83 79.78 79.78 78.83 79.81 80.31
4 Text 111.42 79.83 66.34 65.05 66.24 68.11 68.11 66.24 65.05 66.34
5 Text 100.04 80.12 64.30 65.10 64.77 65.82 65.82 64.77 65.10 64.30

5.3 Classifier-Free Guidance

In our next study we investigate the effect classifier-free guidance (CFG) and its associated
scaling parameter s have on image quality and conditional adherence.

To do so, we train two near identical versions of the diffusion model outlined in Section
3.3. The first is trained to solely generate conditional images, while the second also learns to
generate unconditional images 20% of the time. The latter provides the capacity to integrate
CFG (see Sections 2.3.3 and 4.4 for more detail). Both networks incorporate embeddings
from a text-aligned encoding model utilizing four-second audio samples. We opted to use
these embeddings as they elicited the best alignment between generated samples and con-
ditioning information (see Table 5.2) and demonstraited strong FID scores (see Table 5.5).
Given CFG is predominantly used to improve conditional adherence [28], it made sense to
condition both models on the embeddings that performed best on this metric.

With respect to FID scores, an initial improvement was observed when CFG was enabled
compared to when it was not. Further improvements were realised when s was increased
to 3. Increasing s beyond 3 was associated with monotonically worsening FID scores. This
pattern mirrors those found by Ho et al. [28] and Ramesh et al. [14]. We direct readers to
Figure 5.6 (b) for a visualization of this trend, and Table 5.6 for the raw values.

We attribute the observed trend to the inherent trade of between diversity and fidelity
present when using CFG [28]. As s is increased, generated images are shifted closer to-
ward the archetypal instance of their class [28]. By doing so, image diversity is necessarily
decreased. This said, shifting samples towards an archetypal instance also improves their
fidelity, as those samples become more representative of their class [28]. As mentioned pre-
viously, FID rewards high diversity and fidelity in generated samples [28][14]. We can see
that a balance is struck between these two elements when s = 3, explaining the observed
pattern.

Table 5.6: FID scores by CFG scaling parameter.
CFG Scale None 1 3 5 7 9 11
FID 81.72 79.00 78.69 81.30 85.11 89.65 95.76
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(a) Accuracy by CFG scale (b) FID by CFG scale

Figure 5.6: Accuracy and FID scores by CFG scaling parameter.

Interestingly, while increasing s is thought to push samples towards an archetypal in-
stance of their class, we do not observe a constant improvement in instrument classification
accuracy when s is increased. Our findings showed relatively high performance without en-
abling CFG (67.9%), a substantial decrease in conditional adherence when CFG was enabled
and s = 1 (55.62%), and optimal performance when s = 3 (68.66%). As with FID, increasing
s > 3 resulted in worsening conditional adherence. We refer readers to Figure 5.6 (a) for a
visualization of this trend and Table 5.7 for specific values.

We hypothesize that the large drop in performance observed when s = 1 is a natural
consequence of the reduction in conditional learning when CFG is enabled. When s = 1 we
are tasking the CFG model to produce its conditional sample without any further guidance.
This is because an interpolation between the unconditional and conditional sample, scaled
by 1, equates to the conditional sample itself. Thus, our findings here effectively illustrate
the loss of performance associated with training the generative model to sample uncondi-
tionally 20% of the time.

On the other hand, we believe the decrease in performance observed when s > 3 is
illustrative of excessively aggressive scaling. In particular, we argue that an overly large
interpolation scale could push image representations into areas of the data manifold associ-
ated with different classes. As a result, generated images would no longer appear to belong
to their original class. To support this hypothesis, we draw reader’s attention to Figure
5.7, which displays generated samples that contain components of multiple different instru-
ments. Importantly, these kinds of outputs were only found in cases where large scaling
parameters were used. This supports our argument, providing visual evidence to suggest
that large scaling parameters shift image representations into areas of the data manifold no
longer solely associated with the original condition.

Table 5.7: Accuracy by CFG scale.
CFG Scale None 1 3 5 7 9 11
Accuracy 67.9% 55.62% 68.66% 66.78% 65.93% 65.22% 62.81%

To take a more detailed look into the effect CFG has on conditional adherence, we in-
vestigate the amount of correctly classified images on a per instrument basis. Raw figures
associated with this analysis are presented in Table 5.8.
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(a) Scale = 9 (b) Scale = 11 (c) Scale = 11

Figure 5.7: Generated images containing multiple different instruments.

A noticeable decrease in instances of extremely low instrument level classification accu-
racies is observed when CFG is disabled. This is best illustrated in Figure 5.8. We further
note that as s is increased beyond one, a consistent reduction in the Interquartile Range (IQR)
is observed. This suggests that conditional adherence becomes more comparable across in-
strument classes as s is increased. Importantly, this uniformity appears to come at the cost
of overall performance. This is supported statistically by the highly significant negative
relationship between s and mean accuracy (R = −0.969, p = 0.006).

Table 5.8: Accuracy by CFG scaling parameter.
Name None 1 3 5 7 9 11
Bassoon 36.62% 63.38% 67.61% 63.38% 68.31% 62.68% 55.63%
Cello 80.41% 66.82% 74.65% 71.89% 70.05% 75.35% 70.05%
Clarinet 63.42% 58.43% 80.52% 81.00% 79.10% 77.67% 73.16%
Double bass 89.60% 82.99% 96.22% 95.27% 96.03% 96.22% 93.01%
Flute 43.28% 38.88% 62.59% 57.46% 54.52% 52.57% 51.59%
Horn 25.12% 31.53% 12.32% 14.78% 14.29% 19.70% 21.18%
Oboe 75.35% 4.93% 7.75% 9.15% 9.15% 10.56% 10.56%
Sax 48.03% 41.73% 37.01% 17.32% 17.32% 11.81% 11.02%
Trombone 83.48% 71.23% 90.88% 86.89% 81.77% 75.21% 74.36%
Trumpet 74.02% 25.49% 39.71% 40.69% 42.65% 39.71% 42.16%
Tuba 98.04% 75.98% 96.08% 94.12% 93.14% 95.59% 89.71%
Viola 84.26% 50.25% 93.40% 97.46% 98.48% 97.97% 96.95%
Violin 53.35% 47.61% 50.00% 49.28% 49.28% 46.89% 44.98%

5.4 Projection Mechanism

Our final investigation contrasts the image quality and conditioning adherence of generated
samples from two near identical diffusion models. The models differ only with regard to
how they reduce the dimensionality of audio embeddings. The first model uses PCA to
reduce the 1024-dimensional AudioCLIP embeddings into 256-dimensional representations,
while the other incorporates a leaky ReLU activated fully connected layer. Both models
employ 4 second text-aligned audio embeddings, aligning these findings with the previous
study.

Findings indicate that the PCA variant falls short with regard to both evaluation cri-
teria. Test FID scores for the PCA aligned model are substantially worse than the fully
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Figure 5.8: Boxplot of instrument classification accuracy by CFG scaling parameter.

connected variant. Specifically, the PCA aligned model returned a FID of 148.19, while the
fully-connected variant achieved 78.69. Similarly, instrument classifier accuracy was lower
in samples generated by the PCA model at 53.85% compared to the fully connected model’s
68.66%, indicating worse conditional adherence.

Table 5.9: Performance comparison between projection mechanisms.
Projection FID Accuracy
PCA 148.19 53.85%
Fully Connected 78.69 68.66%

Visually, images generated by the PCA model showed a wider range of brightness, re-
sulting in outputs varying from particularly dark to over-exposed (See Figure 5.9). On the
other hand, images produced by the fully connected model displayed more consistent light-
ing, and visually aligned more closely with the original image distribution. As a conse-
quence, we hypothesize that the discrepancies in FID scores could be a result of the differ-
ences in brightness distributions. We argue this because it is this aspect of PCA generated
images that most substantially deviates from the distribution of testing images. In addition,
we attribute this disparity to the lack of normalization components incorporated in the PCA
variant. We infer this by observing that when dropout and layer normalization’s were re-
moved from the fully connected approach, images appeared similarly over-exposed. See
Figure 5.10 for reference.

The improvement in conditioning adherence demonstrated by the fully connected model
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is likely a result of the learnable nature of its transformation. Unlike PCA, the fully con-
nected layer is optimized as a part of the image generation model. It is therefore capable of
selectively extracting components of the original embedding relative to their significance to
the image generation problem.

In contrast, PCA has no learnable component and necessarily reduces the dimensionality
of the input while preserving as much information about the input as possible. In this case,
PCA retains over 99.9% of the variation in the original embedding. Importantly, there is no
guarantee that all of this information will be relevant to the image generation task. Thus,
by simply retaining as much information as possible, PCA may inadvertently carry over a
significant amount of irrelevant information into the image generation problem. Doing so
would likely make it harder for the generative model to adhere to the pertinent aspects of
the audio embedding, potentially explaining the reduction in conditional adherence.

(a) Dark (b) Normal (c) Light

Figure 5.9: Brightness variation in PCA model variant.

(a) Dark (b) Normal (c) Light

Figure 5.10: Brightness variation in non-normalized fully connected model variant.

5.5 Summary

In this chapter, we presented and discussed our findings from the experiments outlined in
Chapter 4. This began with an initial investigation that focused upon three concurrently run
experiments. Those being studies into embedding alignment strategies, optimal audio sam-
ple lengths, and appropriate training durations. We found that models conditioned upon
text-aligned embeddings generally performed better with respect to conditional adherence
and image quality. Those conditioned on image-aligned embeddings tended to perform
slightly worse on both metrics. This said, their adherence to conditioning information ap-

49



peared to consistently improve as sample lengths were increased. Moreover, these improve-
ments were not found to curtail at any point. As such, future research would do well to
investigate this further.

We noted an interesting observation with regard to errors made by the generative model.
While our best performing model did not adhere to conditioning information perfectly,
aligning only 68.66% of the time, the mistakes it made appeared understandable. Namely
confusing woodwinds with one another, as well as mistaking instruments constructed from
brass. This suggests that the model appears to have learnt representations that resonate with
our own understanding of these instruments.

With regard to training duration, we found that both conditional adherence and FID
scores tended to plateau after, at most, 30 epochs. Negligible performance improvements
were observed after this point. Interestingly, next to no overfitting was observed with addi-
tional training. We reason that this is likely a result of the high level of similarity between
training and testing images.

Remarkably, our model performed better than state-of-the-art GAN alternatives in terms
of FID scores. We reason that this is likely a result of the increased diversity in images sam-
ples present in diffusion models. That said, image resolution could also be a contributing
factor, thus further work would do well to explore the effect increasing image size has on
FID scores.

Our final two experiments investigated the effect of CFG and projection mechanisms re-
spectively. The former study found that performance improvements were observed when
CFG was incorporated. That said, these improvements were only realised when an appro-
priate scaling parameter s was used. In our study we found s = 3 to produce the best
results.

Lastly, our investigation into projection mechanisms found that using a fully connected
layer to decrease audio embedding dimensionality was more effective than PCA. We at-
tribute this to additional normalization components in the fully-connected approach, along-
side its ability to selectively retain information from the original embedding, potentially
helping remove redundant information.
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Chapter 6

Conclusion

This research project focused on investigating the relatively under-explored machine learn-
ing problem of Audio-to-Image generation. We deemed this to be an interesting area, given
its exploration of multi-sensory image generation. As humans, our understanding of the
world around us comes from an integration of data from various sensory channels. When
we merge this information, we gain a more comprehensive understanding than we would
from relying on a single sense alone. This led us to consider the value of understanding how
machine learning models bridge the gap between different sensory inputs. Audio-to-Image
generation allows us to explore this question visually. Unfortunately, the domain is rela-
tively under-explored with state-of-the-art models producing only low-resolution outputs
on highly task specific problems [2][11].

To address this, we proposed the first integration of a diffusion image generator into the
Audio-to-Image generation domain. We also drew inspiration from DALL-E 2 [14], addi-
tional incorporating an expressive audio encoding network based upon CLIP [17][6] into
our generative framework. By integrating these architectural components, we hoped to
improve Audio-to-Image generation performance given the success associated with their
inclusion in the related field of Text-to-Image generation.

Our best performing model demonstrated a substantial improvement in image quality
over existing GAN approaches, as measured in FID. Specifically achieving 75.32 on the met-
ric, compared to 107.26 realised by the best performing GAN alternative [4]. It must be
noted however that state-of-the-art GAN alternatives generate higher resolution images. As
such future work will need to investigate how these models compare at comparable image
scales. Unfortunately, our model was found to generate samples that aligned with condi-
tioning information less frequently than state-of-the-art GANs. Our best model generated
conditionally faithful images 68.66%, while the best performing GAN does so 89% of the
time [4].

Our experimental analyses revealed a number of particularly interesting results. Namely,
we found that conditioning upon text-aligned embeddings was more effective than image-
aligned embeddings for our particular problem. We hypothesize that this may have been a
result of the limited intra-class variance present in our dataset, and wonder if the same trend
would be observed with a more diverse dataset. Additionally, we found models conditioned
on image-aligned embeddings produced more conditionally faithful images given longer
audio sample lengths. We reason that the additional information provided by longer audio
samples could prove useful given the increased complexity inherent to image-alignment.
Moreover, we found frozen image-alignment to yield more predictable results than mutual-
alignment. We attribute this to the stable nature of the image-head in the frozen case.

In addition to the above, we also found that employing a learnable dimensionality re-
duction layer for audio embeddings was more effective than PCA. This effect was likely
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a combined result of the additional normalization components incorporated in the former
method, as well as its capacity to selectively incorporate information from the original em-
bedding, depending on its relevance to the image generation task.

Finally, we found that incorporating classifier-free guidance was useful for improving
model performance. Specifically, by setting the scaling parameter to 3, our model was able
to achieve both better conditional adherence performance and FID scores. We also note that
choosing the scaling parameter effectively has a significant impact on performance, thus
highlighting the importance for future researchers to select this parameter careful.

Whilst our model faced challenges with respect to conditional adherence, the outcomes
of this research project remain promising. Specifically they provide a solid foundation for
justifying the inclusion of diffusion models into the Audio-to-Image generation domain.

6.1 Limitations

Whilst successful, our study was not without its limitations. We suffered from two major
challenges in particular.

Firstly, we were required to work around quite serious computational constraints. While
we had a substantial amount of resources at our disposal, the generative model required
a considerable amount of time for training and evaluation. This issue restricted us from
running multiple iterations of our model under identical settings, consequently limiting
our ability to conduct statistical evaluations. Doing so is important given the degree of
randomness inherent to the generative process. More extensive evaluations would have
yielded more reliable results, enabling us to draw more definitive conclusions from our
work.

Secondly, the dataset we employed only enabled a proof of concept project. Whilst pop-
ular within the literature, SubURMP lacks a sufficient amount of intraclass variation for
complex analyses. Consequently, the task leaned more towards a class conditional diffusion
problem. If a more diverse dataset was used, we could expect more intriguing results to be
achieved, alongside the learning of richer latent data manifold which could be very interest-
ing to explore. This said, the primary aim of this work was to demonstrate the feasibility of
incorporating a diffusion model into the Audio-to-Image generation problem. As such we
do not view this limitation as a major setback.

6.2 Future Work

Future work could build upon the current project by exploring a variety of promising di-
rections. Firstly, we highly recommend that subsequent studies tackle the limitations we
highlighted above. Doing so will likely result in more interesting and robust conclusions
that could add significant value to the Audio-to-Image domain.

In addition there are also a number of additional paths to explore. One exciting prospect
would be to incorporate a super-resolution network to increase image resolutions. These
networks are commonly used in diffuse Text-to-Image generation tasks, enabling the up-
scaling of 64 × 64 × 3 images to much higher resolutions. By doing so, one would enable a
fairer comparison of image quality between state-of-the-art GANs that produce 256× 256×
3 resolution images [4].

We also encourage future researchers to investigate different strategies for improving the
conditional adherence of the network. We found this to be the biggest drawback of the cur-
rent approach, thus solving this would be highly beneficial to the domain. Those interested
could explore the effect longer sample lengths have on image-aligned embeddings, as our
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findings showed this to be a potentially useful means of improving their performance. Ad-
ditionally, researchers could also investigate the effect classifier guidance has on conditional
adherence. Whilst this technique has not proven as effective in the Text-to-Image domain
[14][12][13], it does not necessarily follow that the same is true for Audio-to-Image gener-
ation. Furthermore, researchers could also explore the effect training both sub-networks in
an end-to-end fashion has. We found good results were achieved when the image genera-
tor could selectively chose what information to retain from the original audio embedding
(i.e. with a fully connected layer). One could reasonably expect additional performance im-
provements to be achieved if the audio encoding network is trained with feedback from the
image generation network.

Lastly, further research investigating the latent data manifold could prove interesting.
We found interesting results when scaling CFG image representations and would welcome
a more thorough exploration of this area. This could yield highly influential findings with
respect to understanding how machine learning models blend information from both audio
and image modalities. This is a large aspect of what makes the Audio-to-Image generation
domain important, thus we strongly suggest future work analyse this in detail.
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