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Abstract

Current practices for monitoring the catch of deep sea fishing vessels is
labour intensive requiring a person on vessel measuring individual fish
lengths manually. Capturing videos of fish on-vessel instead allows the
use of machine learning algorithms for tackling a computer vision based
problem to automate the collection of morphological data of the observed
fish.

In this thesis we investigate essential methods required and develop a
system that uses machine learning algorithms and computer vision tech-
niques to calculate centimetre accurate lengths of singulated fish from
video footage. The first stage in this process is the data acquisition, where
we explore the use of both a fixed camera and a free camera (one that is
held in hand) for gathering the video data from which we extract millime-
ter lengths. Lengths were gathered on-site to compare the lengths found
from images at different orientations and translations. An analysis of the
different camera positions and rotations found that a camera positioned
above the object of interest and calibration pattern was able to achieve
the most accurate lengths. Rotation was found to have an increasingly
detrimental effect on predicted lengths as rotation, measured in radians,
increased.

Secondly, we use binary masks that are created both manually, and
by using an automated approach, based on edge detection, for training
a segmentation model to identify fish in images. We leverage shape fea-
tures and interpretable ML classifier to analyse the features of contours
from both inferred masks and those derived from an edge detection. In

our analysis of these shape features, we identify a range of values for the



teature “circle deviation” which may be used to identify potential fish con-
tours that did not pass the classification, and flag such contours for further
training. We use contours, derived from the edge detection approach, that
do pass the classification for creating a dataset of cropped images, to train
a GAN from which a synthetic imagery set is created.

Thirdly, we develop a method from extracting the lengths of fish from
images by using a checkerboard pattern as a point of reference, to relate
pixel lengths to millimeters. Only inferred contours with shape features
within the range identified by our analysis are used in calculating lengths.
This approach reduced the number of partially visible fish or false positive
inferences from affecting our recorded lengths.

Finally, the performance of models trained on real images, synthetic
images, and a combination of the two are compared. A model that was
trained on both real and synthetic images achieved an average for the ab-
solute differences between true and predicted lengths of below one cen-
timetre over 128 samples. Our results suggest that the use of synthetic
data to assist in the creation of a robust training dataset is viable. How-
ever, this synthetic data works best when there is also real data available

in the training set.
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Chapter 1
Introduction

The environmental impacts of overfishing have been clear for decades [27].
With 70% of assessed fish populations being fully used, overused or in cri-
sis [51], governments have been pushing for more oversight and regula-
tion of the fishing industry[27]. Despite this, a study in 2016 [28] found
that reconstructed catches between 1950 and 2010 were 53% higher than
the reported data.

In New Zealand, monitoring of commercial fisheries consists of report-
ing on the numbers and kinds of fish caught. Only in important fisheries
is the size, age and the quantity of fish that are being caught also mea-
sured [4]. Just over a quarter of fish caught in deepwater fishing activities
is caught by vessels which have a fisheries observer present on the com-
mercial fishing boat [16], while the rest is left to commercial fishers. The
Ministry for Primary Industries in New Zealand is beginning to develop
digital monitoring systems to be able to verify what is being reported [17].
Artificial intelligence (AI) provides the opportunity for the development
of automated systems to quantify fishing activities, allowing for better
monitoring and catch estimates that are less susceptible to manipulation.

The field of artificial intelligence is at the precipice of a significant change
in focus, and the shift from model-centric approaches to a data-centric ap-

proach more accurately represents real-world issues when implementing
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2 CHAPTER 1. INTRODUCTION

data science solutions [59].

Much of the recent innovation in data science has focused on improv-
ing or re-imagining model architectures. Over the past few years models
have been created that are eight times smaller than their predecessors [80]
while also improving their performance. However, data remains the most
significant factor when developing a machine learning (ML) solution and
is the greatest contributor to the performance of supervised models[33].
With the digitalization of monitoring methods on fishing vessels, the data
required to implement Al fish surveying systems are now present.

1.1 Motivation

New Zealand’s marine fisheries waters measure 4,200,000 km? making it
the fourth-largest exclusive economic zone[1] and was ranked fifth in 2016
out of 28 nations, for healthy fish stocks. Despite this, mandatory mea-
sures were called for in 2020 to stop the overfishing of tarakihi, which
have been fished down to 15% of their original levels[57]. By leveraging
recent advances in Al, more specifically deep learning, we hope to help
mitigate some of the damage caused by fisheries, by providing a method
to accurately measure the length of caught fish.

Science-based management of commercial fisheries suffers from a lack
of availability of data [15]. For informed decisions to be made, govern-
ments need greater insight into the state of sea life. Neural Networks ap-
plied in computer vision offer the opportunity to gain information on cur-
rent practices without introducing biases or information loss at the catch
stage [46].

Advances in neural networks and the increase in speed of the GPUs
required to run them over the last decade have allowed the practical im-
plementation of this technology in a wide range of industries. However,
the adoption of smart monitoring systems in the fishing industry in New

Zealand is yet to be implemented. Availability of data surrounding the



1.1. MOTIVATION 3

fishing industry and their onboard activities is not widely available; visual
data of the deck is often locked behind privacy concerns where employ-
ees of the vessels may be identified, and all imagery is reliant on having
the approval of either the captain or the organisation to be distributed. As
such, the analysis of the potential of these techniques in the industry has
been hampered.

Non-invasive approaches to monitoring are crucial when applying au-
tomated systems on-vessel; the privacy of those working on-vessel is highly
important. In New Zealand, data collection for monitoring the types and
quantity of fish caught is mainly reliant on human reviewers [16]. With
over 4 million square kilometres of ocean, efforts to monitor the multi-
billion dollar New Zealand fishing industry are difficult and expensive,
resulting in only around 25% of deepwater catch occurring on a vessel

with an observer [16].

Deep learning generally requires large datasets to automate the pro-
cess of feature engineering [73], this data must be gathered, cleaned and
in the case of supervised learning, labelled. According to a survey in 2020
by Anaconda [13], getting data ready for training (data loading and data
cleansing), on average, takes up 45% of data scientists’ time, while model
selection takes 11% and model training and scoring take 12%. The bottle-

neck presented from data preparation is clear.

A data-driven approach to machine learning presents the opportunity
to achieve reliable results without the burden of having to gather hun-
dreds of thousands of images. Recent innovations, such as the genera-
tion of synthetic images using adaptive discriminator augmentation [42]
enable the creation of high-quality synthetic imagery with far fewer in-
put data than previously required and its implementation into data-driven

machine learning has been advocated for by industry leaders [78].

The generation of robust datasets that are clean enough to be used
to tackle machine learning problems is often the stage that presents the

greatest difficulty. Development of data science solutions on problems for
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which no cleaned and publicly available dataset exists may face many is-
sues, such as time or cost constraints related to gathering the data, as well
as privacy concerns when the data pertains to the general public. The de-
velopment of synthetic data generation aims to overcome these issues [86].
With synthetic data we hope to develop a reliable model that may be used
to predict the location of nemadactylus macropterus (tarakihi), inferring a

segmentation from which length may be estimated.

1.2 Goals

The overall goal of this thesis is to train an ML algorithm to reliably de-
tect tarakihi fish and to estimate their length from this detection. We will
also explore the use of synthetic data to help create a varied dataset large
enough to train a NN, Figure 1.1 illustrates the core flow of data, from raw
images to a length prediction per fish. Specifically, this research will focus
on the following objectives

1. Gathering a diverse dataset suitable to achieve accurate length esti-
mation. This dataset will be used to train both a network for seman-
tic segmentation and another for the creation of synthetic images.

Data collection will be performed in iterations to allow for lessons

learnt to be applied to subsequent data collection methods.

(a) Data collection will first be performed with a handheld camera
to allow for a large variety of observation angles and distances
to be captured. A checkerboard calibration pattern will be visi-
ble in the imagery and provide a point of reference from which

lengths may be inferred.

(b) The second data collection approach will use a fixed camera
with a bird-eye perspective looking down at fish placed on a

table below. Fish will be measured on-site providing us with a
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ground truth set of lengths to which predicted lengths may be
compared.

(c) The factors that may impact the accuracy of length measure-
ments, such as the orientation and distance of the camera will

be explored and discussed.

2. Investigating the use of generative adversarial networks to create
synthetic data. This is expected to provide us with a larger and more

varied dataset, improving the final model’s performance.

(a) A generative adversarial network will be trained on the im-
agery gathered as part of this research and used to synthesize

additional images.

(b) The effect of synthetic imagery when included in the training
data for a segmentation model will be evaluated by comparing
the performance of three different models, one trained on real
images, another trained on synthetic images and a third model

trained on a combination of the two.

3. Exploring the use of bounding boxes, as well as object segmentation,
to estimate the pixel length of fish. Pixel to length ratios found from
the calibration pattern, included when gathering data, will be used
to relate pixel lengths to millimeter lengths.

(a) Measuring fish length from bounding boxes may prove difficult
particularly if the fish is not parallel to the bottom of the im-
age. Measuring length as the distance from each corner of the
bounding box may be explored as well as using image process-
ing tools to rotate the image until the fish length can be attained

by measuring the pixel distance across a single axis.

(b) Object segmentation offers a method for deriving pixel lengths

directly from the inferred segmentation of a fish. This approach
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would not be impaired by the rotation of the fish as the in-
ference is per-pixel allowing the maximum length of the seg-
mented region to be used as the total pixel length for the fish.

1.3 Major Contributions

This thesis makes the following major contributions.

1. This thesis has provided a method for extracting centimetre accurate
length estimations from the contours of a binary mask created from
the inference of a semantic segmentation model. The impact of cam-
era location and orientation on lengths estimated from a static object
and reference pattern is analysed providing justification for the opti-

mal camera position.

2. This Thesis presents a method for evaluating the quality of contours
derived from segmentation masks by using shape features in con-
junction with interpretable machine learning methods to generate
shape functions that explain the contribution of features towards de-

termining a high or low-quality contour.

3. This thesis explores the use of synthetic imagery for assisting in data
creation where little is available. Synthetic data is manually anno-
tated and used for training segmentation models. Our results sug-
gest that synthetic data may be used in addition to real imagery to
improve the training data for segmentation models. Other similar
research particularly in medical imaging where privacy concerns are
an issue has also explored the use of synthetic imagery for training
deep neural networks and found similar results.
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Figure 1.1: Flowchart illustrating the entire process surrounding fish seg-
mentation and the use of contours. Image frames are extracted from a
video (a) and masks are created where fish are visible (b). The contours of
fish masks are used to train an interpretable model, which then determines
the quality of future masks (c). Quality masks are used to crop the origi-
nal image, and the cropped images are used to train a GAN to synthesize
new images (d). Real and synthetic images are then used in training a seg-
mentation model, new mask images are made from the inference of this
model on unseen fish images (g). Finally, the contours of these inferred
segmentations are evaluated by the interpretable model. Good contours
are used to estimate length (h), and contours with a circle deviation in a
certain range are flagged as potential fish and used for further training if

a fish is present (i). Poor inferences are discarded if no fish is present (j).
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1.4 Outline

The remainder of this thesis is structured as follows:

Chapter 2 discusses the background for this thesis. First, detailing the
current practices in New Zealand fisheries and introducing the concepts
relevant to this research. We then survey literature with a similar scope to
this thesis.

Chapter 3 describes the data collection process for each of the three
factory visits that were conducted to gather the data for this work. We
also provide a summary of the datasets created from this raw data and the
lessons learnt from each visit.

Chapter 4 presents the augmentation that was used on image data
and investigates the importance of camera positioning across the different
datasets. We introduce interpretable ML techniques for analysing camera
location and orientation in this investigation.

Chapter 5 describes our two approaches for creating segmentation masks
and our method for generating synthetic images. We also present a method
for evaluating the shapes of contours from inference masks to classify the
quality of the inference.

Chapter 6 provides a detailed description of our approach for estimat-
ing millimeter lengths from the contours of inferred fish. We then investi-
gate the impact of synthetic data when training a segmentation model on
both the quality of inferences and the accuracy of predicted lengths. Our
approach for adjusting predicted lengths to correct for unknown error is
also described.

Chapter 7 Summarises the conclusions made for each of the major areas
of this work and discusses the topics we believe future work would benefit

from.



Chapter 2

Background

2.1 NZ Fishing Industry

Long-term profitability of the fishing industry requires sustainable prac-
tices, fish stocks must be exploited to maximise the profitability of the in-
dustry, but not over-exploited to the point where stocks collapse and fu-
ture supply is reduced. Trawling was recently found to have killed around
80% more sea life than previously reported [84] (2018), at a total of 25 mil-
lion tonnes up from the previously estimated 14 million, the difference be-
tween the two estimates was almost equally contributed to by unreported
landings and discards.

Declining fish stocks and damage caused to sea habitats from large-
scale fishing practices has led to the development of strict regulation as to
where fishing may be conducted, the quantity of fish that may be caught
and the size of fish that may be kept. Size limits were imposed to help
protect fish stocks, by allowing fish to grow to a certain size they are given
a chance to breed at least once [5].

The dangers brought forth by unsustainable fishing practices not only
present an immediate issue by damaging seafloor habitats but also bring
us ever closer to a dwindling supply of food [64]. Current methods are

far from optimal, focusing on the size of the catch irrespective of the per-

9
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centage of bycatch or damage to aquatic habitats [29]. Greater oversight
is needed to ensure that more efficient fishing practices may be imple-

mented.

2.2 Computer Vision

Computer vision involves techniques for the analysis and interpretation
of visual data from digital images, typically using machine learning algo-
rithms to extract useful information. The key computer vision techniques
explored in this research are canny edge detection, object detection and
semantic segmentation.

Edge detection is the use of mathematical methods for extracting edges
from an image by detecting sharp changes in the brightness of an image.
A convolutional kernel is a common method for calculating the image gra-
dient to identify the locations in the image where a sharp change in bright-
ness exists.

Semantic segmentation provides a pixel-level classification for the ob-
jects present in an image. This information is often stored in the form of
an image mask of equal width and height to the original image, but where
pixel values instead represent the class of the object at those coordinates

in the original image.

2.3 Machine Learning

Machine Learning is a branch of Artificial Intelligence (AI). Al is the imi-
tation of human intelligence through computer science and mathematical
algorithms. The core goals of artificial intelligence include learning, rea-
soning and problem solving at or above a human level, concepts first cov-
ered in [83] Alan Turing’s ‘Computing Machinery and Intelligence’ (1950).

Machine Learning algorithms focus on the automation of learning with

the goal of the trained algorithm being able to achieve some task or pre-
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diction. During Supervised and unsupervised training, data is provided
to the algorithm in order for it to identify trends and develop a foundation
for its future predictions, though data has to be provided in this case, the
process of identifying patterns in the data is automated. Transfer learning
allows an algorithm to use the information that has already been learned
in recognizing patterns for one problem to be then applied to a different
but similar challenge. An example of this may be a model that is trained
to detect dogs, then being trained to detect cats. The use of transfer learn-
ing means that this model does not need to be trained from scratch for the

second challenge.

Supervised learning is performed when training data has a target class
or label. The supervised model learns to recognize patterns in the data
which distinguish the target classes, it may then apply the learned patterns
to new data to predict the target class.

Unsupervised training is performed when the data does not have a tar-
get class. Clustering is a popular branch of unsupervised training, instead
of learning trends in the data that help in distinguishing a targeted class,
the model learns to cluster the data based on similarities, with probabilis-
tic machine learning each data point may be assigned to multiple clusters,
with a per cluster probability, we assume that each data point belongs to
the cluster with the highest probability.

Other methods of machine learning, such as reinforcement learning,
do not require data to be provided but instead may reward the machine
for performing correct actions. The field of Al in robotics and simulation
contains many examples of this [45].

OpenAl’s [22] use of reinforcement learning for multi-agent hide and
seek is a prime example of how reinforcement learning can lead to in-
telligent solutions to complex problems. In this research there were two
teams of agents, the first group (hiders) was rewarded +1 if all team mem-
bers were hidden and penalized otherwise. The second team (seekers)

were penalized -1 if all hiders were hidden and rewarded +1 otherwise.
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Through these seemingly simple goals, the hiders learnt to manipulate ob-
jects and construct shelters while seekers learnt to use ramps to traverse
shelter walls.

2.4 Neural Networks

Neural Networks, inspired by neuron connections in the brain, are one
of the most powerful tools for supervised learning [77]. Neural networks
consist of an input layer, an output layer and a layer in-between (hidden
layer). Deep neural networks consist of a greater number of layers, with
each hidden layer typically having multiple nodes, and are more suited
for complex tasks due to a larger number of learnable parameters.

These nodes are used to identify patterns in the data, with the nodes
in the final layer representing some target or class. Nodes in each layer
have an activation function, determining their output, and a connection
to the nodes in the layers before and after to pass a signal from the input
layer to the output. Weighted connections are adjusted during the training
phase so that the network may learn which patterns are associated with
the correct output.

Convolutional Neural Networks (CNNs) are commonly used to tackle
computer vision problems, they include one or more convolutional layers,
consisting of convolutional filters (kernel), this kernel has a size of n x n.

In the convolutional layer, each value of the kernel matrix is multiplied
by the corresponding value in the input image. The total sum of each
multiplication is then the result for a single value in a new output image,
at corresponding pixel coordinates located at the centre of the kernel’s ap-
plied area. This process is iterated over the entire image, with a configured
step size, to decide how many rows or columns the kernel is moved each
time it is applied. Padding is used to maintain the size of the original
image and to allow edge pixels to be processed [58].

By using kernels spatial information from neighbouring pixels is cap-
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tured. Changing the values of the kernel allows for various features of
the image to be captured, such as edges, colour gradient or texture, CNNs
learn to use these features in predicting the class of the input image. Pool-
ing layers are commonly used in CNN:s, this allows for a reduction in the

spatial size of the image, reducing the computational complexity.

2.5 EfficientNet

Modelling for fish length estimation will comprise of training two EfficientNet-
based models on the images of fish. The first, named EfficientDet [81]

is an object detector. The second is a segmentation model with an Effi-
cientNet backbone [39]. Both are based on Google-autoML’s EfficientNet
[79] which used neural architecture search to create a baseline network
that achieved state-of-the-art performance on 5 commonly used transfer
learning datasets and often used far fewer parameters. This more efficient
model allows less demanding hardware to be used to implement the re-
sults of this work.

Research into developing EfficientNet looked into re-thinking the way
that neural networks are scaled. Previously width, depth and image size
had been arbitrarily up-scaled, a time-consuming approach that, accord-
ing to the research by Mingxing Tan & Quoc V.Le [81], was tedious and
yielded sub-optimal results. The new approach presented in the Efficient-
Net research paper instead looks at finding a principled method for up-
scaling convolutional networks that balances all the dimensions of the net-
work, by scaling each with a constant ratio.

This ratio consists of constant coefficients, «, 3,7, found from a small
grid search of the small base model. To increase computational resources
by 2%, depth is increased by o', width by 5" and image size by 7.

EfficientDet is based on an EfficientNet backbone and uses the same prin-

ciples in its approach to scaling. A bi-directional feature pyramid network
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(BiFPN) is used for multi-scale feature fusion. This approach was previ-
ously used by Shu Liu et al in their work on path aggregation [47]. Ef-
ticientDet research optimises this approach by removing nodes with one
input edge, the bi-directional node block is repeated, allowing for further
high-level feature fusion. The features found from the EfficientNet back-
bone are passed to this BiFPN and through to a class and box network for

the final prediction.

2.6 Generative Adversarial Networks

Generative adversarial networks (GANSs) use deep learning techniques to
generate synthetic data. This is done by using two neural networks com-
peting against one another, one network to generate the synthetic data
(generator) and another to try and distinguish this from real data (discrim-
inator). This is an iterative process that is concluded once the discrimina-
tor can no longer separate the synthetic data from the real, this stage is
known as the Nash Equilibrium|[38].

Generators generally begin with an input consisting of random noise
and attempt to replicate real data from this, if the generator fails to con-
vince the discriminator that the generated data is real then the loss is calcu-
lated from this outcome, backpropagation occurs through both networks
but is only used to update the weights of the generator.

GANSs have been used in a wide variety of problems from the creation
of artwork via style transfer to the creation of completely new imagery.
This research will focus on the latter.

There are many challenges with taking such an approach to creating a data
set with sufficient fidelity to justify its use in the field.
One such challenge is that the creation of synthetic data with GANs

may result in a model that has over-fit the generated data. This may lead
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to reduced performance when the model is used to infer on real data. Sev-
eral approaches will be explored to overcome this issue and facilitate the
creation of an optimum data set. By training a final model on both syn-
thetic and real imagery, as well as applying data augmentation, we will

reduce overfitting to this imagery.

As the generator network will be attempting to convince the discrimina-
tor that the generated images are real, a particularly convincing image
may cause mode collapse. Mode collapse occurs when the generator con-
sistently produces the same or a small group of outputs that succeed in
getting past the discriminator. Should this occur there may be a lack of
diversity in the synthetic training data. Proven methods of overcoming
this issue consist of implementing a Wasserstein loss function [20] or in-
corporating a generator loss function [53]. Multiple generators may also
be utilized to increase the diversity of synthetic data. The captured im-
agery will consist of a large variety of different poses and rotations to help
reduce the likelihood that the networks will favour a single one.

2.7 Stylegans

StyleGANs overcame some of the issues presented by early implemen-
tations of generative adversarial networks (GANs). By borrowing from
style transfer literature they proposed a new architecture that automati-
cally learned to separate high-level attributes from stochastic variations
[43]. This was done by separating features through adjustments in image
resolution, pose and identity (coarse resolution) may be separated from
stochastic variations such as freckles, eye and hair colour (fine resolution).
The model architecture developed in the stylegans research deviated sig-
nificantly from traditional GANs at the time, by removing the first layer
of the feed-forward network (mapping network) through which the la-
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tent code would be passed through. Instead, the input is passed through
8 fully connected layers mapping it to an intermediate latent space, this
latent space is used to control the generator (synthesis network) by ap-
plying instance normalization at each convolutional layer, Gaussian noise
with per-channel learned scaling factors applied and is added per channel
after each convolution [43].

By using the intermediate latent space to assign instance normalization
at each convolution, the learned affine transformation from the mapping
network adaptively normalizes the noise-added output of the convolution
with the relevant style twice at each resolution of the synthesis network.
applying a targeted resolution-specific style when upscaling the learned

constant

Fréchet inception distance (FID) was the metric chosen to evaluate the
performance at various stages of the development of Stylegans. The prior
standard for evaluating the quality of synthetic imagery was to use the
Inception score, which used a pre-trained Inception V3 model to classify
images from the 1,000 classes it has been trained on. Using the confidence
of the predictions on the synthetic images and the integral of the marginal
probability of the predicted classes the inception score is able to provide a
quantifiable performance metric without the need to manually verify each
of the generated images. However, IS does not measure how well these
images compare to the real images [24].

“We introduce the Fréchet Inception Distance which captures the simi-
larity of generated images to real ones better than the Inception Score.”
- Heusel et al.[37]

FID provides a method of evaluating the performance of the generator
in a GAN by comparing the similarities between the generated and real
images [41]. Similarly to the inception score, FID uses an inception model
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to evaluate the quality of synthetic images. However, FID compares the
GANSs-created images to real images by using the last pooling layer of the
model to compare computer-vision-specific features of the images [24]. A
Gaussian is the maximum entropy distribution for the first two moments,
the mean and covariance. The measured difference between the two Gaus-
sians, one for real data and another for synthetic data, is the Fréchet Dis-
tance [37].

StyleGAN?2 is a development from the code produced in an NVIDIA Re-
search paper[43], Analyzing and Improving the Image Quality of Style-
GAN, which sought to improve the generated image quality of the original
StyleGAN network by redesigning the generator network and proposing

changes to the training methods.

Synthetic data was generated using a style-based GAN architecture, StyleGAN2-
ADA-Pytorch. Adaptive discriminator augmentation (ADA) is leveraged
to dynamically adjust the augmentation probability, the purpose of this
technique is to increase the probability of augmenting the images when
too much overfitting occurs and to decrease the probability when there is

too little overfitting [42].

2.8 Interpretable Machine Learning

Interpretable ML techniques are rapidly gaining traction as they provide
algorithms that may leverage the power of machine learning for pattern
recognition, while also being able to present the contributing factors of an
inference. ML models that are able to provide comprehensible justification
for their decisions intrinsically promote trust in the developed model. The
use of ML models for determining the result of loan applications has been
under the spotlight in recent years [35], and mistrust of such systems has

grown. Interpretable techniques now offer the potential for institutions to
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implement powerful automated systems that are also accountable.
Interpret ML [62], is an open-source project that enables further insight
into interpretable ‘glass-box” models such as decision trees, logistic regres-
sion and linear regression both on a global scale; to better understand the
importance of input features, and on a local scale; for understanding what
particular features led towards a decision. Black box models trained out-
side the project may also be explained, but only on the local scale using
interpretability techniques such as SHAP [50] and LIME [70].

2.9 Related Work

Some of the earliest research in fish length estimation using computer vi-
sion techniques was done in the early 1990s, Nielson et al. (1991) [60]
discussed the potential uses of an automated system for quality assur-
ance using vision techniques, though they summarised that commercially
available equipment to perform this with the right precision, was at the
time unavailable. A paper in 1993 Arnarson et al. described a prototype
machine in which fish were passed under a video camera over a conveyor
belt and were then sorted into bins, achieving 99% accuracy for flatfish
and round fish [21].

Work by Qiu et al. [68] investigated the use of transfer learning for im-
age classification on a popular fish dataset in 2018. Their use of pre-trained
bilinear convolutional neural networks showed some success, by improv-
ing the accuracy of popular networks, though the computational load was
significantly increased. Prior research into the use of machine learning-
based computer vision techniques in the fishing industry has shown some
success. Monkman et al [2019] [55] looked at performing object detection
on side-face images of European sea bass and was able to predict the loca-
tion of fish in images with a mean intersection over union (IOU) of 93%.
In this research fiducial markers of varying sizes were used for calibrating

images and provided a point of reference when measuring the length of
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the fish. Raw imagery in this dataset consisted of the side-profile of fish,
imagery was horizontally aligned with the fish. Such an approach meant
that using the difference between the minimum and maximum x values
for bounding boxes could be converted to the total length of the fish by
calculating the pixel to millimetre ratio from the known calibration object
in each image. Such an approach provides insight into how length estimat-
ing may be tackled. However, though fruitful in its accuracy when assess-
ing estimated length, this method will not be directly translatable to many
real-world use cases. Imagery datasets rarely consist of such favourable

examples where a single axis may be used to estimate length.

Stereo optical systems are relatively popular in the use of monitoring
fish in water, the National Oceanic and Atmospheric Administration have
used baited remote underwater video stations (BRUVS) equipped with a
stereo video system for at least 10 years [61]. The use of stereo video sys-
tems opens up the opportunity for distance to be measured. Rodriguez et
al. [72] paired this technology with computer vision, namely background
subtraction, to generate a segmentation for the fish by separating each
pixel into a foreground or background category. The output of this pro-
cess was a binary representation of the candidate foreground from which
size, area, and length to height ratios are used to determine whether the
object should be considered a fish or not. If determined to be a Fish its size

was then measured.

Alvarez-Ellacuria et al. [65] sought to use a different approach for the
estimation of the length of the European hake. Instance segmentation was
used to identify individual fish in every image by using polygons. This
provides an advantage over bounding boxes as polygons are not bound to
just two axes, meaning regardless of rotation a length may be estimated.
As the data used for this research consisted of hake in boxes, stacked over
one another, many of the fish were not fully visible. To combat this, re-
searchers segmented the heads of fish and used known head to total length
relationships to extrapolate the total length per fish detected. This ap-
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proach was able to identify 87% of heads in the imagery. However, the
individual level precision for newly measured fish was +10.0cm for fish
measuring 20-27.5cm, with the unsigned median difference between mea-

sured and estimated fish lengths being 1.1cm.

More recently, Palmer et al. [65] also looked into the use of instance seg-
mentation to measure the number of obscured fish in buckets. Focusing
on the common dolphinfish, an important part of the commercial fishing
industry in the Mediterranean. Their use of high-resolution imagery and
a larger dataset provided much insight into the benefit of segmentation
approaches and was able to achieve an accuracy of 86.10% on a dataset
consisting of 4117 fish from 276 images. A different approach was used
to estimate the length of fish here. As the weight of each bucket was also
measured, researchers were able to use the bucket weight and the pre-
dicted number of fish in each bucket to estimate the mean fish length per
bucket. Deviations between observations and estimates ranged between

-7.4 and 4.8 centimetres.

The use of GANSs for the creation of synthetic training data has been
explored prior to this work, particularly in the field of medical imaging,
where data is not widely available or protected due to privacy. [32] Eil-
ertsen et al (2021) provided empirical evidence supporting the use of en-
semble GANs in the creation of synthetic data. The approach in this re-
search used entirely synthetic imagery for training data to overcome the
lack of available training data for tumour classification. An ensemble of
GANs was used here to reduce trained models overfitting to synthetic
data. Though these models did not perform as well as a model trained
entirely on the real data used in training the GANSs, their performance was
still notable and their techniques to avoid overfitting may prove useful for
this research.

Data gathering for modern deep neural networks often requires large train-

ing datasets to infer reliably. Researchers at Nvidia have recently sought
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to address this by automating the process of segmenting synthetic images.
DatasetGAN [86], using styleGAN as a generative backbone, seeks to re-
duce the amount of manual annotating required when training segmen-
tation models by using decoded latent GAN code to automate semantic
segmentation of images. Their proposed method only requires a few of
the synthetic images to be manually segmented to train the discriminator.

Alvarez-Ellacuria et al’s work [18] on Image-based, unsupervised esti-
mating fish size from commercial landings using deep learning set out to
achieve a similar goal to that of this research, to automate reviewing of fish
length to reduce the exploitation of stocks. This work looked at estimating
the length of hake based on the size of the fish’s head, as the data in this
research consisted of images of boxed hake the entire length of the fish
was not always in view, as such, the head was masked using mask-RCNN
and the total length of the fish was inferred using known and measured
head to total length ratios for hake. Though the mask-RCNN approach
worked well, identifying 87% of hake heads, the individual level preci-
sion for newly measured fish length, for fish in the 20-27.5cm range, was
+10.0cm. Their research suggests that insufficient training data for fish at
various postures may have led to this result, as well as variance relating to
the sex of the fish that were unaccounted for.

2,10 Summary

Several challenges with using the generated imagery for length estimation
are present. There is no true value for the generated fish’s length nor will
a ruler be present in this imagery. Using the pixel length of the fish should
suffice as generated images will also be of the same perspective as those
used in training.

Semantic segmentation models can also require large amounts of data

and be difficult to train, we suggest using a pre-trained model, with frozen
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lower layers of the discriminator trained on ImageNet or COCO and fine-
tuning the model for this problem. This was successfully performed in
both ‘Freeze the Discriminator’ [54] and “Transforming the output of GANs
by fine-tuning them with features from different datasets’” [23].

This research aims to leverage recent advances in object detection and
generative adversarial networks to tackle a prominent issue in the fishing
industry. GANs will be used to generate synthetic imagery, based on data
gathered on the vessel. This will be used to create a diverse dataset that
is able to identify, using an EfficientDet object detector, and estimate the
length of tarakihi fish to automate the process of discarding undersized
tish. This will facilitate the fisheries industry meeting compliance while
providing a non-invasive method to measure the tarakihi population and

size.



Chapter 3

Data Collection and

Pre-processing

In this section, we discuss the different approaches taken to gather the
data used in the later stages of this research. This data is the source for
all models and processes developed in later chapters. Each iteration of
the data collection process is described and key findings that altered the
methods for gathering future data are explained.

Some of the methods used for deriving fish length from images and
the ground control points from a checkerboard pattern are mentioned, at
a high level, here to better explain the iterative data collection process.

These methods are later discussed in greater detail.

3.1 Introduction

Data collection conducted in this stage of the research was an iterative
process. The data collection process was not done just by collecting the
information to be used in training computer vision learning algorithms
but also to provide evidence on the methods required to most accurately
infer the length of a fish from a single camera.

Three factory visits were conducted to gather the data to be used in this

23
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research. Each visit uses the findings from the last to improve our data col-
lection process to allow us to gather a varied dataset that is similar to the
environment found on fishing vessels. In New Zealand, tarakihi manage-
ment strategies enforced by the government [12] require sub-minimum (25
centimeters) size catches to be reported. Therefore a below one centimeter
average distance of inferred predictions to ground truth lengths was set as
the target for this research.

Much of the research in Al systems over the past decade has focused
on developing new methods and architectures, as result learning networks
have improved significantly [78]. Many practical applications of these
networks now have more to gain by moving away from developing the
architecture and instead improving the data. As such machine learning
research is beginning to move from a focus on improving model architec-
tures toward the data-centric approach of systematically engineering the
data that may be used to successfully develop these models [78].

Modern learning networks are often trained on large public datasets
such as LSUN [85] or ImageNet, which contains 1.2 million images for ob-
ject localisation [75]. Datasets of this size are not readily available in many
industries, including the fishing industry, and their development may face
significant challenges, particularly when concerning the privacy of indi-
viduals. The performance of architectures developed using these large

datasets suffers from problems such as overfitting when data is scarce.

”Synthetic data is an important tool in the tool chest of data-
centric AI” - Andrew NG [78]

To explore the potential for synthetic data to be used in tackling the
data scarcity problem in the fishing industry the data gathered in this stage
was also to be used to train a stylegans model, allowing the creation of a
larger dataset through the generation of synthetic imagery.

From this dataset, we go on to train a segmentation model and develop

systems to predict lengths from inferred segmentation masks. Once these
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two milestones have been achieved we can then evaluate the performance
of the system when synthetic data is used to train the segmentation model.

Where this research differed from past literature is that fish were re-
moved from the buckets they are auctioned from, meaning that where
other research had to approximate length from the head size [19] or av-
erage length per box [65], this research focused on directly measuring the
length of individual fish from imagery.

The ultimate goal of this research is to develop a system that would
allow catch data for undersized fish to be gathered directly from footage
gained on the vessel. Despite this, our research also had data collection
limited to an auction centre. As such, efforts were made to try and repli-
cate what the imagery would look like if it were gathered on a vessel.
During the first and third visits, a metal surface was used to provide a
similar backdrop to that of the metal surfaces found in the fish handling
areas of commercial fishing vessels [10]. The second and third visits were
conducted under shade in natural light, as the main source of light during

the day on these vessels will be natural.

3.2 First Factory Visit

For the first factory visit data collection consisted of a handheld camera,
facing top-down over a metal table. Two buckets were placed on the metal
table for ease of access, this allowed us to quickly take a fish from the
bucket containing unseen fish and display it below the camera. After plac-
ing an individual fish on the table, it would be rotated and flipped to max-
imise the data gained from each individual. As all fish handled as part of
this research were provided by the fishery and were ultimately to be sold
on, special care was taken to avoid keeping the frozen fish outside of the
buckets of ice for a prolonged period.

The camera used in this research was a custom-built camera used specif-

ically for fishing vessels, though when on-vessel this camera is fixed, it
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was established that holding the camera in hand would allow us to gather
a large amount of data at various angles and distances. The camera used
for gathering the videos for this research had a resolution of 960x540 and
recorded imagery at 15 frames per second.

A checkerboard pattern with a known tile size was used for calibrat-
ing the camera. It also provided the information necessary, in the form
of a ground control point, to track the position of the camera in 3D space
relative to the table. Duraprint paper was used for the material of the cali-
bration pattern as this provided a waterproof surface that is tear-resistant
and less reflective than a laminated piece of paper, all factors that may
distort measurements.

The benefit of this approach was to reduce overfitting to a particular
setup. Footage from a free camera is less likely to lead to a neural network
model only learning features that are apparent from a certain distance or
angle. Thus reducing a loss in accuracy across the varying distances and

angles of footage from different boats.

As the purpose of the dataset gathered in this visit was to provide us
with a diverse imagery dataset, fish observed in this factory visit were
not measured on-site. As there exists no ground truth for the lengths of
these fish this dataset was not used for evaluating the accuracy of pre-
dicted lengths.

A challenge that arose from this approach was simulating fish in mo-
tion. Though one of the targets of future work is to be able to estimate
length from live fish, data gathered in the auction room was not using live
samples, as such fish had to be placed in positions that, though not ideal
for modelling efforts, were more similar to imagery that may occur with
tish moving down a chute or being passed at high speeds during sorting
on a vessel. As shown in Figure 3.1 fish in motion present a significant
amount of motion blur, making a precise length estimation more difficult.
Holding the camera in hand also presented some issues. The large vari-

ability in the position of the camera and position of the fish on the table
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e

Figure 3.1: Examples of imagery taken. The top left is a gurnard. The
bottom left is a tarakihi in motion. The right is a clear example of tarakihi.

resulted in some fish not being fully visible in the frame or the view of
these fish being obstructed by the buckets that held the fish. The impor-
tance of a calibration pattern being present in the imagery is made more
significant when the distance and angle of the camera are highly variable.
However, by moving the camera to capture many different perspectives,
to allow for a more varied dataset, the calibration pattern was not always
tully visible, or visible at all in some of the images. The fish used in this re-
search had been frozen whilst stacked in the boxes, this factor helped with
simulating the curl that may be observed with live fish. from the 15 buck-
ets of fish provided, with 12 of tarakihi and 3 of fish common in a tarakihi
haul, these other fish were largely comprised of red Gurnard. A total of 13
videos were gathered, these videos ranged in lengths of up to 15 minutes.
In total 100,664 frames were extracted from these videos to create the first
dataset for this research, though many did not contain images of tarakihi.
This data had to be sorted and unusable data was removed.
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3.3 Second Factory Visit

A second factory visit was conducted to gather additional imagery data.
The lessons learned from the first visit were used to adapt the data acquisi-
tion process and gather a second dataset to support the development and
evaluation of our length estimation process.

Though the approach of using a free camera was able to provide us
with a dataset that contained a large variety of different observation an-
gles for the measured fish there were also significant drawbacks. One such
drawback was the lengths derived from such an approach suffered from
large variations in the scale factor. The scale factor was a measured value
for the known difference between pixel and millimeter distance, found by
measuring the checkerboard calibration pattern. Depending on the posi-
tion of the pattern relative to the fish the derived scale factor would lead
to an over or under prediction of the true scale factor at the position of
the fish. Using a free camera also meant that the scale factor had to be re-
calculated for every image, as the camera angle and distance were always
moving.

A second issue with the free camera approach was the presence of un-
wanted objects in the image. one instance of which was the buckets of fish
that were kept on the table for ease of access. The buckets containing both
seen and unseen fish provided both an issue when training and inferring.
The number of polygons required to create a training mask for a single im-
age significantly increases when either bucket is present if it contains fish,
as the number of fish present in the image increases. Annotating these
images would increase the time necessary to develop our dataset. How-
ever, not annotating these objects would result in negative training for the

segmentation model and lead to a model with worse performance.

The free camera approach was still useful for providing valuable data
for training the segmentation model. A fixed camera proved to be neces-

sary for accurate length predictions. To identify whether sub-centimetre
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inferred lengths were possible the camera was fixed above the table on the
second visit. A metal frame was used to hold the camera stationary above
the table, allowing us to have a more consistent scale factor, a visualisation
of this set-up is shown in Figure 3.2. The buckets of fish were also kept be-
low the table to ensure that they did not obstruct the view of either the fish
or the calibration pattern.

The imagery from this visit was split into two distinct groups. The first
consisted of images with a ruler present in which the lengths of the fish
were measured on-site. The second category consisted of fish being placed
on the table once on each side and at varying rotations. The ruler was not
present in the imagery of this second group, as the lengths were not being
measured at this stage, the calibration pattern was kept to ensure a point

of reference for lengths.

Three buckets of tarakihi were used as part of this data collection pro-
cess, totalling 15 videos which when extracted, produced 100,232 image
frames. The fish from each bucket were placed on the table beneath the
camera and their length was measured against a ruler also present on
the table, after each individual was measured it was placed into a second
bucket reserved for measured fish. After all the fish from a bucket were
measured, they were taken from the secondary bucket that held the mea-
sured fish and placed on the table once more at varying rotations with both
sides of each fish being shown to the camera. This was done to gather a
separate set of data which may be used for training. Measuring the lengths
of fish in person allowed us to gather some ground truth measurements
to compare both the human-measured length from images and the predic-
tion lengths from an automated process using computer vision. For each
of the fish measured on-site a singular frame was extracted from the image
dataset. This image was generally the image in which the fish was most
clearly visible, if there were many frames in which the fish was clearly vis-
ible the frame closest to when the true length was recorded was selected.

Lengths inferred from these images were then used to evaluate the perfor-
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mance of our lengths estimation process from the inferred masks

3.3.1 Key Findings from The Second Visit

The second factory visit provided us with insights on how to improve the
accuracy of our length estimation that the approach used for gathering
data in the first visit was unable to provide. A fixed camera provided
us with the opportunity to manipulate the imagery to reduce distortion,
which may affect our measurements of the length of fish, on a large scale
as the camera and angle were fixed. By identifying the pixel coordinates
of an object of known size the perspective of images could be warped re-
ducing variations in the size of objects based on their distance from the
camera. The edges of the table were used for this, as a rectangular table
was used the width of the table was consistent on both the bottom and top
sides. Though this was not apparent in the imagery as the camera was not
perfectly centred and was closer to the left side of the table, making the
right side appear smaller. By warping the perspective of the image using
each corner of the table we were able to reduce the distortion present and
conduct a bird’s eye view transform.

In a sample set of 69 images from the second factory visit fish lengths
were on average predicted to be 18.7mm greater than the measured length
prior to the warping of the image dataset. An absolute average difference
between measured and predicted lengths of 22.5mm was measured for
these images, the median of the absolute differences was 17.2mm and an
R? of 0.76 was measured.

By warping the perspective of the image through the use of a bird’s
eye transform inferred lengths of fish were improved. The absolute av-
erage difference for inferred lengths was reduced to 13mm for the 69 test
samples, with a median absolute difference of 9.0 and an R? of 0.85. The
greater difference between true and measured lengths when the image
was not transformed is attributed to the calibration pattern being closer
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Figure 3.2: visualisation of the supporting structure and table placement
used in the second factory visit. Poles are made up of steel and aluminium
poles, steel poles were 1 metre in length and aluminium poles were 1.2
metres in length. The surface of the table was 610mm millimetres by 1220

millimetres.
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to the camera than the fish. As a result, our scale factor at the point of
the calibration pattern was greater than at the point of the fish resulting
in inflated values for the estimated fish lengths. More information on this
process can be found in subsection 4.2.1.

3.4 Third Factory Visit

The process of the third factory visit closely followed that of the second.
The main differences were that this time a metal sheet was placed on top
of the table used in the second visit. The intention of which was to make
our surface more similar to the metal surface found on the areas of fishing
vessels where fish are handled. This approach also removed the sharp line
visible down the centre of the trestle table used in the second visit. Alu-
minium was chosen for the material as this provides a more matte surface
and reduced the glare of various light sources around the factory. Though
our camera had an anti-glare filter we wanted to minimise the adverse
effects glare may have on training.

The main purpose of this visit was to gather more ground truth lengths
of tarakihi. As such, every fish that was handled had its length recorded.
For this visit researchers were able the acquire a measurement device used
specifically for fish, which may provide more reliable ground truth mea-
surements for the full length, fork lengths for 155 tarakihis were measured
during this visit. 15 Videos were gathered as part of this visit, these pro-
duced 192,204 image frames when extracted. After measuring an indi-
vidual fish, it was then placed below the ruler flat on the metal sheet at
various orientations and both sides of the fish were often shown to the
camera. Fish from the final bucket, bucket 6, were used a second time.
After removing the ruler from the table, each of the fish was placed on
the table again, in multiple positions. This would allow us to use the au-
tomated masking process developed on the data from the second visit to
generate more masks, with a reduced likelihood of nearby objects affecting
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the contours of the fish.

A final set of 5 fish were measured at the end of the visit, with a free-
held camera to ascertain how variations in the angle and distance of the
camera affect length predictions. The length of each fish was recorded
and it was then placed on the table, the camera was then moved to vari-
ous positions while keeping the fish in frame. The fish was not placed in
different positions in this stage as the focus was on how the angle of ob-
servation affected lengths rather than maximising the information gained
from the individual fish.

Data from this visit was sorted differently from the data from the two
prior visits. All frames in which an individual fish was above or on the
table, regardless of whether it was clearly visible or obstructed by hands,
were placed in a folder named with an ID, the species (tarakihi) and the
measured length for that fish. This was done differently to the method for
the second visit in which a single frame was selected for each measured
fish, this frame being the image in which the fish was most clearly visible.

The imagery was stored in this manner as it allowed predicted lengths
across multiple frames to be easily compared to the actual measured length
for said individual.

3.5 Summary

In summary, three different raw image datasets were collected as part of
this research. The first utilised a free camera (held in hand) for collecting
a large set of image data from a wide variety of observation angles. The
second and third visits used a metal frame to suspend the camera above
the table on which the fish were measured, allowed a more consistent view
of the area of interest and made possible the removal of unwanted objects
that were visible in the dataset. The second visit used a plastic trestle table
as the surface on which the fish were presented, while the first and third

visits used a metal surface, which is more similar to what may be found
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on a commercial fishing vessel.

Only data from the third visit was used in training the final Stylegans
model, though data from the first visit was used in an early implemen-
tation. This dataset was chosen for training the generative network as
synthetic images would then have a grey metallic background. The fixed
camera with a bird’s eye perspective of the observation area in this im-
age set meant that images cropped around fish were less likely to contain
many background objects. 700 synthetic images were annotated and used
to compare model performance when trained on synthesised imagery. The
synthetic image generation process is described in subsection 5.2.3.

A separate set of data gathered during the third factory visit was taken
while holding the camera in hand, an example is shown in the fourth im-
age (d) of Figure 3.3. This was done to allow a comparison of predicted
lengths at different camera angles, and this process is explained in more
detail in section 4.3.

Images from the fixed camera datasets, from visits 2 and 3 (example
shown in the second (b) and third image (c) from Figure 3.3, respectively),
were transformed for use in training the segmentation model, creating two
subsets of the data from these visits. A fixed perspective was required for
this transformation to avoid having to calculate the parameters for every
image (see section 4.2.1 for detail).

Images from the first visit which contained background fish, that were
not annotated, such as in Figure 3.3, were cropped around the annotated
tish in the centre of the image, to avoid negative training on fish that were
not annotated in buckets at either side of the image. Tables 3.1 and 3.2
show a breakdown of the datasets created from the imagery gathered from
all three factory visits, and the synthesized imagery.
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(a) Image from the first factory visit witha  (b) Fish being measured in the second visit
handheld camera. from a fixed camera.

(c) Fish being measured in the third visit with (d) Image from the third visit with a

a fixed camera. handheld camera.

Figure 3.3: Images comparing the different datasets gathered as part of
this research. The first image (a) displays an image from the first factory
visit in which the camera was held in hand. This example shows the fish
currently being observed, in the centre of the table, as well as a secondary
fish in the bucket on the right. Images the second (b) and third images
(c) show the fixed perspective from the second and third visits. The final
image (d), also from the third visit, was taken as part of our test on the
impact of different camera observation angles on the predicted lengths of
fish, described in section 4.3.
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Table 3.1: Summary for image datasets that were annotated

Annotated Datasets Summary

Dataset Number image Size | Use

1) cropped images, | 517 variable segmentation: training,test
visit 1 and validation

2) Warped images, || 1554 738 x 378 | Segmentation: train-
visit 2 ing,test and validation

3) Warped images, || 381 636 x 323 | Segmentation: train-
visit 3 ing,test and validation

4) Synthetic images 700 320 x 320 | Segmentation: training

Table 3.2: Summary for image datasets that were not annotated

Non-Annotated Datasets Summary

Dataset Number image Size | Use

5) Warped images, || 13247 732 x 376 | Images for automating

visit 2 segmentation mask cre-
ation. Section 5.1

6) Measured fish, | 56187 960 x 540 | frames for  extracting

visit 3 lengths from video. Sec-
tion (6.4).

7) Third visit free || 1220 960 x 540 | Evaluating impact of cam-

camera

era position. Section (4.3).




Chapter 4

Data Handling

Ensuring the quality of data was consistently high was an important chal-
lenge that would facilitate achieving our goal of centimetre accurate length
estimations. The methods for helping to achieve this goal at the data col-
lection and handling stage are discussed in this chapter. This includes pre-
processing methods as well as augmentation of the data to demonstrate an
optimal process to achieve this goal.

The augmentation of data in machine learning provides the opportu-
nity to create diversity in a dataset where there may be little, improve
the quality of the data and bolster the amount of data available to solve
machine learning problems. Augmentation that is conducted with expert
knowledge may help reduce the model overfitting to the input data and fa-
cilitates the use of smaller datasets when tackling complex ML problems,
such as image classification when using deep learning [66].

Augmentation, in this research, was not purely used to reduce overfit-
ting to input data when training the networks. Transforming images from
the second and third factory visits allowed us to overcome limitations ob-
served in the first visit. This was done by applying a birds-eye transfor-
mation to the data from two of the three visits, allowing us to constrain
the visible region, in images, only to the area of interest, this is discussed

in subsection 4.2.1.
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4.1 Chapter Goals

This chapter aims to present the various augmentations conducted in this
research and investigate the importance of camera positioning. To achieve
this aim, this chapter will:

* present the processes used in this research for augmenting data prior
to training and good practices for handling data from which lengths
are derived,

* provide evidence and justifications for the best positioning of the
camera for gathering relevant image data by evaluating the various

observation angles and the corresponding predicted lengths of fish,

¢ introduce interpretable techniques and explain the benefit such tech-
niques bring to understanding our data, and how this may be lever-
aged to improve our systems.

4.2 Augmentation Method

Albumentation [25] is an extensive python library that provides a wide ar-
ray of tools for fast image augmentation, which was used for augmenting
data when training the segmentation model, four examples of this aug-
mentation are shown in Figure 4.1. A total of 14 augmentations were used
at this stage, though a limit of 9 could be used for a single example these
included:

* Horizontal flip; with 50% probability.

¢ Shift Scale rotation; randomly applies affine transformations with a
scaling factor of 0.5 and shift limit of 0.1. This was kept relatively

low to retain the general shape of the fish.
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¢ Padding if needed; ensures undersized images were padded to be
320 x 320. This allowed us to ensure all our images were the same

size when training the model.

¢ Random crop; always randomly crops inputs to 320 x 320. The use of
a random crop meant that we could avoid scaling all our images to
be the correct size while also providing useful examples of partially
visible fish, allowing for more consistent inferences when fish are

partially visible.

* Gaussian noise; applies glass noise with a probability of 0.2. The
use of added noise to our images enables a more robust model when
images are of lower quality, or when visibility may be impaired. salt

spray is a common example of this on commercial fishing vessels.

* Perspective transformation; applies a four-point perspective trans-
formation of the image with a probability of 0.5.

* 90% probability of one of the three:

- Contrast limited adaptive histogram equalization (CLAHE), han-
dles amplification of contrast in 8 x 8 regions of the image to
equalize the image, using bilinear interpolation to remove the

boundaries of these regions.

- Random Brightness; randomly changes the brightness of the
image between a factor of —0.2 and 0.2.

- Random Gamma randomly changes the gamma of the image
between the limits of 80 and 120. Lighting conditions are highly
variable on a partially covered deck out at sea, we adjust bright-

ness and gamma in hopes of representing this.

* 90% probability of one of the three:
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— Sharpen; displays a sharpened version of the image with visi-
bility in the range of 0.2 to 0.5, where 0 is a fully visible original
image and 1 is a fully visible sharpened image.

— Blur; applies a normalised box filter to the image with a kernel

size of 3 to blur the image.

— Motion Blur; applies blur to the image to give the perception of
movement, by applying a kernel with a line of non-zero values,
a kernel size of 3 was used here. This was included in addition
to our attempts to create motion blur while capturing the data,

as many images did not include motion blur.
* 90% probability of one of the two:

- Random Contrast; randomly changes the contrast of the image

between a factor of —0.2 and 0.2.

— Hue saturation value; shifts the hue between —20 and 20, the
saturation between —30 and 30, and the value between —20 and
20. The Perceived colour is variable due to changes in light-
ing conditions throughout the day. Hue and saturation changes
were kept relatively low to recreate this effect when training.

4.2.1 Warping Images

To reduce distortion in our dataset a birds-eye transform of the image was
conducted to only include the surface on which the fish was being dis-
played and measured. This provided us with two significant benefits to
the quality of the data. Firstly, by allowing us to reduce the presence of
items unnecessary or detrimental to the length estimation or segmenta-
tion systems, such as inferences of fish present elsewhere in the image.
The second expected benefit is a more consistent pixel-to-millimeter ra-

tio. The calibration pattern, from which the ratio of pixels to millimeters
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(a) Random crop to (b) Horizontal flip
size 320 x 320

(c) Sharpened image with alpha (d) Perspective transformation
of 1

Figure 4.1: 4 examples of the augmentations applied to data used for train-
ing the segmentation model.

for a single image is calculated, generally remains stationary. This means
that the pixel-to-millimeter ratio is only calculated at a single point in the
image, as fish are not placed in the same location as the calibration pat-
tern their true pixel-to-millimeter ratio will be slightly different. Further
distortion will be introduced by the angle of the camera, as the camera is
unlikely to be positioned perfectly above the table, and from minor optical
distortions from the lens design, though these are corrected, some margin
of distortion is likely to be present.

The edges of the table were chosen as our ground control point for
acquiring the pixel coordinates of the quadrangle vertices required to per-
form the perspective transformation, Microsoft Paint was used to acquire
these point coordinates. Points at the edges of the table were chosen as the
table seldom moved during the handling of the fish and its edges being
visually separated from the background made it easier to select consis-
tent pixel coordinates across different videos. This process was conducted
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for every 5 images or where it had visibly changed, these generally re-
mained consistent for individual buckets. A Numpy [6] array was used to
store each of these points, in the order of bottom left (bl), top left (1), top
right (tr), and bottom right(br). To calculate the size of the output image
from the perspective transformation the maximum size of the widths and
heights from the input image had to be calculated. The width and height
were calculated using Pythagoras” Theorem to calculate the maximum hy-
potenuse for both the width at the bottom and top points and the height
on the left and right of our corner points.

The width for the bottom of the image was calculated as follows.

widthyostom = 1/ (bre — bl)? + (br, — bl, )2 (4.1)

where bl is the bottom left and br is the bottom right.

This was repeated using the coordinate points at the top of the table. The
maximum width was taken from these two outputs and was used as the
width for the transformed image. This process was also conducted on the
left and right sides to calculate the maximum height to be used for the

height of the transformed image.

The OpenCV function CV2.GetPerspectiveTransform [8] uses both the
edge points from the original image and the max width and height from
our desired region of interest to calculate a 3x3 perspective transformation
matrix [8]. coordinates of the quadrangle vertices from the original image
are multiplied with the transformation matrix and the top two values of
the generated matrix are then divided by the bottom value to calculate the

corresponding coordinates in the destination image.
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(635,322)

(163,92) (155, 415)

Figure 4.2: Image showing before and after performing a birds-eye trans-
formation to an image from the third factory visit. Pixel coordinates are
shown for the edges of the table in the left image and show the edge point
coordinates of the second image.

The equation used in CV2.GetPerspectiveTransform [8] is as follows:

tiy, | = TransformationMatriz * | y; 4.2)
t; 1

where output(i) = (X/, y;), source(i) = (z;,y;) and i=0,1,2,3. An example of



44 CHAPTER 4. DATA HANDLING

applying the matrix generated by CV2.GetPerspectiveTransform [8] to the
bottom right vertex from the input image in Figure 4.2.1 is shown below.

0.094¢ — 01 2.252¢ — 02 —1.503¢ 4 02 780 568.655

~5.104e — 02 9.547¢ —01 —7.95le+01 | = | 427 | = | 288.357

~1.00de — 04 —6.126¢ — 05 1 1 0.895
(4.3)

Using the outputted matrix by solving for ¢,z = (568.655) and ¢;y; =
(288.357),t; = 0.895 provide us with the coordinates of the corresponding
pixellocation in the output image (635, 322). The OpenCV.warpPerspective
[8] function was used to apply the transformation matrix to the entire im-
age.

Mz, Moy, Myg Moz, Moy, Mo
Mgz, Moy, Myy™ M1z, Maay, M33)

dest(x,y) = src( (4.4)

Where M is the transformation matrix, dest is the output image, src is the

original input image.

4.3 The Importance of Camera Positioning

The camera’s role in this research is to map three-dimensional points and
map them to a two-dimensional plane from which machine learning may
be applied to extract information useful in estimating the length of an ob-
served fish. In order to achieve this the world coordinates of an object
must undergo a rigid transformation, from the 3-D world coordinate sys-
tem to the 3-D camera’s coordinate system; represented as extrinsic pa-

rameters, and then a projective transformation to 2-D image coordinates,
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represented as intrinsic parameters [3].

Various factors can affect the size of objects observed through a modern
camera. the use of a lens may result in the distortion of an image and focal
lengths can affect the perceived size of distant objects [63].

A factor that is of particular importance in this research is the position
of the camera relative to the calibration pattern, and how it may alter the
length calculation due to variations in the scaling factor at different lo-
cations in a three-dimensional space. Objects closer to the camera will re-
quire a smaller pixel-to-millimeter ratio as they are represented by a larger
number of pixels. Identifying the importance of the relativity of our object
of interest (fish) with regards to the source of the scale factor (calibration
pattern) was an important part of justifying the use and best position of a
fixed camera.

Extrinsic parameters include two operations, a translation and a ro-
tation, these represent the transformation from the world points to the
camera coordinate system [3]. The camera’s coordinate system measures
objects relative to the camera and begins at its optical centre. The Z axis
extends from the optical centre outwards from the camera, while the X and
Y axis make up the 2-D image plane[3].

The intrinsic matrix parameters consist of the focal length, optical cen-
tre and the skew coefficient [3], it is defined in Equation 4.5 and the intrin-
sic matrix from 20 images is shown to its right. To calculate this matrix the
camera parameters must first be estimated, this may also be done by using

the calibration pattern.

fo 0 0 505.778 0 0
s fy 0= 0 532.871 0 (4.5)
Cx Cy 1 486.487 137.128 1

where f represents the focal length in pixels, c is the principal point in
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pixels, and s is the skew coefficient [3].

By finding image points for the observed checkerboard pattern in the
image; in the form of pixel coordinates, and comparing these to the known
world points of the calibration pattern; projected onto the image, we may
calculate the reprojection errors. These are a measure for the euclidean
distance between the true position of a point and its projected points in
the image. Reprojection errors closer to zero signify that projected image
points are close to the true locations of the points (world points).

The world points consist of a matrix of the X and Y coordinates of the
key points; points represented by the internal corners of the checkerboard
pattern. Our pattern was made up of nine tiles by seven tiles, and thus
contained eight by six coordinates for the world points of the calibration
pattern. These are calculated by using the known length of the tiles, 23
millimeters, and storing the distance of the top left of each tile, in both
axes, from the top left of the image.

By understanding the change of projected world coordinates based on
the position of our sensor, we may estimate the sensors position in 3d
space. We were then able to analyse the impact of adjustments in the
camera’s orientation and transformation on estimated lengths by using the
sensor’s estimated position and the predicted length from the correspond-
ing inference mask. The process of deriving these lengths is explained in
section 6.2.

4.3.1 Implementation

To quantify the impact that different locations and orientations have on
the predicted lengths of objects, the extrinsic parameters of the camera
first had to be calculated. This was done by identifying its position in 3D
space, in the form of a translation matrix, and its rotation, in the form of a
rotation matrix, relative to the calibration pattern. The camera parameters

were calculated by using 20 images in which the camera position varied
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Figure 4.3: Visualisation of some of the camera (red) positions above the
calibration pattern (grid on the bottom right).

while the calibration pattern remained fixed on the table below. Images
were chosen based on the location and orientation of the camera signifi-
cantly deviated so that the calibration pattern’s location in the 2D image
pane would vary from image to image. By varying the position of the
calibration pattern in the image we hoped to reduce the likelihood of esti-
mated camera parameters being altered by distortions present in a single
area of the image. Barrel distortion and pincushion distortion will shrink,

or enlarge objects close to the edges of our image respectively.

After calculating the camera parameters each of the images was read
and the extrinsics were calculated. Both the rotation matrix and the trans-
lation vector were found and used to calculate the camera’s location and
orientation in the 3D scene. A visualisation of seven of the camera loca-

tions and orientations is shown in Figure 4.3.
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The rotation matrix is a 3x3 matrix, that describes a rotation in three-
dimensional space. Paired with a translation vector of size 1x3, world
coordinates may be transformed into camera coordinates [2]. Both the ro-
tation matrix and translation vector are unique to each image, as the cam-
era was in motion throughout this test. As such, extrinsic parameters for
each camera had to be moved into the world coordinate system, which
was fixed by having a stationary calibration pattern, to be compared. As
shown in Figure 4.3 this origin of our world coordinate system begins at
the top left of the calibration pattern and the axes extend out from this
location. This was used to calculate the camera’s orientation relative to
the control point, the pattern. Each orientation matrix was converted into
a 1x3 rotation vector, describing deviation from the axes in radians. This
1x3 rotation vector made it easier to explain the deviation from a perfect
birds-eye perspective, and therefore evaluate the impact of this deviation
on inferred lengths.

Our exploration into the impact of camera pose on length began by
looking at the variations in orientation. As image data was ordered by a
Unix timestamp for the video and the corresponding frame number for
each image, our visualisation of the various camera orientations in Figure
4.4 shows the observation angle changing throughout time. The camera
remained fixed until around the 400" index as can be seen by orientations
in this range remaining mostly constant. After which the camera’s orien-
tation and location were altered, starting at a high position and moving
left to right (translation). Care was given to maintaining the optical centre
facing towards the fish. Images in which the calibration pattern was not
tully visible were removed from the dataset as such instances would not

match up with our world coordinate matrix and could affect readings.

Movements were fairly constrained by physical limitations on site, as
the table was placed in a corner of the factory to limit its movement in the
world coordinate system this meant that the camera could not be moved
into positive Y values (below the calibration pattern shown in Figure 4.4)
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Figure 4.4: Plot showing orientation values per axis plotted on the Y axis,

and their index in the table on the X axis.

or further into the negative values of the X axis (to the left of the calibration
pattern in Figure 4.4).

Every still image, from which the extrinsic parameters were found, was
also passed through the inference process and a length in millimeters was
derived. The predicted length of the fish was subtracted from the true
measured length to provide us with the difference in estimated length.
Predicted lengths that were kept were capped at 3 standard deviations
above or below the true length of the fish to keep most of the data points
but reduce the number of outliers, such as images in which the fish was
only partially visible or an unusually poor inference. The dataset used in
this test consisted of 1383 images, from 3 different fish. Images from a

fixed camera that were used in this test did not have a birds-eye transform
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Figure 4.5: Scatter plot showing the difference between the predicted and
true length on the X axis, per rotation axis, and the orientation value on
the Y axis.

applied as the focus was entirely on camera location and orientation.

Linear regression was plotted from this data to identify whether there
was any correlation between camera orientation and the predicted length.
Figure 4.5 shows the results of this regression. Greater negative rotations
in the X axis and higher positive rotations in the Z axis tended to be as-
sociated with a higher predicted length, resulting in larger positive values
on the X axis. This was in line with expectations as the camera was placed
in positions in which the fish was in the foreground and the calibration
pattern was in the background, resulting in an inflated scale factor at the
position of the fish, and a larger predicted length. However, due to the re-

strictions discussed earlier, little data was available for the inverse, when
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the calibration was closer to the sensor than the object of interest.

Due to the use of signed values in describing the rotation, in radians,
of our camera, values close to 7 but of opposite signs would appear very
distant when plotted but in 3D space would be very close. The use of
absolute values to represent deviation from a camera oriented perfectly at
0 radians on each axis was considered. However, as our rotational values

remain below 3 this was not deemed necessary.

Rotation about the Y axis did not present a significant change in the
predicted length of our object of interest from a linear regression. Though
this value did vary significantly throughout this test as shown in Figure
4.4, its orientation, as measured in radians, did not reach deviate to values

as great as orientation on either of the two other axes.

The location in the three-dimensional space of the sensor relative to the
pattern was not considered with this simple linear regression, nor were
pairwise relationships. In order to explore this the orientation, location
and predicted length were paired for each frame and an interpretable gen-
eralised additive model (GAM) [49] was trained on the data to find pat-
terns and explain the relationship between orientation, location and the

predicted length.

A GAM was used as it leverages ”shape functions”, a non-linear func-
tion that describes the relationship between input and target features. Its
complexity is arbitrary and so may be used to explain these relationships
with greater accuracy than a linear model. A GAM specifically from In-
terpretML research [62], was used as it considers pairwise relationships,
which is not the case in traditional GAM models, which is described in
detail in section 5.3.2. For this experiment, we used an explainable boost-
ing regression model to identify the most significant inputs that result in
a large gap between true and predicted lengths, as well as the extent of
their impact on predicted lengths. Results for the feature importance are
shown in Figure 4.6, and an example of the extent of the impact of change

in orientation on the predicted length is provided in Figure 4.7.
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4.4 Results and Analysis

4.41 Image Transformation

Though the method for transforming images proved valuable for provid-
ing a cleaner image set, an issue exists with the transformation of images,
any change to the size of the calibration pattern relative to that of the fish

when transforming images results in a skewed scale factor at the location
of the fish.

This did not present issues in early tests on data gathered in the second
visit as the camera was well centred above the table. However, depending
on the position of the camera relative to the key points this transformation
may lead to a reduction in the accuracy of length estimations. This was
observed in data from the third factory visit where the size of the fish was
increased relative to the pattern, resulting in an over-prediction of lengths
of around two centimetres. Camera placement perfectly centred over the
area of observation would reduce this loss in accuracy. Additionally, as the
increase in size was consistent across the predicted lengths these may be
amended by performing linear regression. However, at this stage of our
research, we wish to minimise any factors that have a negative impact on
the predicted lengths and as such, this transformation was only applied to

training images.

Two new datasets were created by warping the images from the second
and third visits. These were 13247 images from the second visit (dataset 6
in Table 3.2), which were later used to create a masked dataset (dataset 3 in
Table 3.1) in subsection 5.2.1. The second dataset created included 56187
images from the third visit. The images from the third visit were initially
to be used for deriving lengths. However, after later discovering the issues
with using warped images for length estimation on this dataset, this was
instead condensed down to only 381 images (dataset 4 in Table 3.2).
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4.4.2 Camera Position

Overall Importance:
Mean Absolute Score
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Figure 4.6: Chart for the measured feature importance from training an
explainable boosting regression model. The X-axis displays the feature
importance found for each of the six input variables, and significant pair-
wise relationships. Input variables included rotations on the X, Y and Z
axes; measured in radians, and translation in 3D space along the X, Y and

Z axes, measured in millimeters.

We had expected extreme observation angles to be detrimental to the
accuracy of length estimations and our experiment in section 4.3 supported
this hypothesis. Figure 4.6 shows the orientations on both the X and Y axis
as well as the location along the Z axis are highly important when consid-
ering the change in predicted length compared to the true length of the
observed fish. Justification for this importance is understood to be caused
by a variation in the perceived size of the fish relative to the pattern.
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Figure 4.7: Shape function illustrating the orientation of the camera on the
Y axis against the contribution this orientation has on the predicted length.
Contribution scores are the expected change in predicted length when this

level of orientation on the Y axis is observed.

An image in which the camera had a high orientation value, close to
5 on the X or Y axis would need to be positioned closer to the table to
keep the calibration pattern in view and would therefore have a transla-
tion value on the Z axis closer to zero, the inverse is also true. These vari-
ables were positively correlated and were found to have a clear impact on
the predicted length of the fish.

The impact of the orientation on the Y axis as identified by our inter-
pretable model is shown in Figure 4.7. Camera positions closer to the pat-
tern, represented by higher values for the location on the Z axis (LZ), were

found to result in an over prediction of the length of the fish. This is shown
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Figure 4.8: Shape function illustrating the contribution score for
predicted — true length (Y axis) at different locations of the camera on the

Z axis of the world coordinate system (X-axis).

as a positive contribution score at distances above -608 millimeters on the
X axis in Figure 4.8. Values below 930 millimeters were found to have a
negative impact on the predicted length. As shown by the density plot
below Figure 4.8, there are no observations for location values on the Z
axis between -712 and -923. As such, the distance at which we would ex-
pect to begin seeing under-predicted lengths is difficult to determine, as
contribution scores remain within 42 for distances between -592 and -935.

However, variance in the accuracy of the projection was also likely to
have an impact. Higher orientations and lower translation on the Z axis,
suffered from greater reprojection errors when mapping the keypoints of

the checkerboard pattern that were detected in the image to those known
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in our world coordinate system. Reprojection error provides us with a
qualitative measure of the accuracy in our image of the true points projec-
tion [3]. The impact of such variance is likely to be minimal as reprojection
errors in both fixed and free camera calibrations were within an acceptable
range, with the overall mean error in fixed images at 0.08 pixels and that
of the free camera at 0.16.

In contrast to the results from our linear regression orientation on the
Y axis was found to be the feature with the greatest importance when
used for training an explainable boosting machine. The target class for
this experiment was the difference between the predicted and true length
so our contribution scores illustrated in Figure 4.7 show the increase or de-
crease in the predicted length. An orientation on the Y axis of -0.15 radians
would suggest an under prediction of 20 millimeters in this model, ceteris
paribus. Fewer examples are available for Y values below -0.1, though the
45 examples between —0.169 and —0.141 suggest this is not an anomalous
estimation.

4.5 Chapter Summary

In this chapter, we presented our pipeline for data augmentation, by de-
scribing the various augmentations applied when training the segmenta-
tion model. In addition to this, we explained the differences in handling
data for training and for images from which lengths would be derived.
The process for applying a birds-eye transformation on training images
was described in detail, and we provided an example of this application
on an image from our dataset. This was performed with the intent of re-
moving unwanted objects from the image prior to any augmentation. It
was noted that this system was beneficial in removing non-annotated fish
from below the (physical) table that were still visible at the edges of the
images. However, the application of this process to images from which

the length is derived has a detrimental effect on the estimated lengths of
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fish when the length of the calibration pattern relative to that of the fish is
altered.

We introduced the use of GAMs for providing interpretable machine
learning methods, providing us with greater insight into the relationships
between input and target variables. These models were used to explore
the impact of various camera angles on the difference between true and
predicted lengths, providing a justification for the use of a fixed camera,
placed directly above the object of interest. We established that not only
does the image taken from a camera in this position have a scale factor that
results in a more accurate millimeter length for the observed fish but also

benefits from a smaller re-projection error.
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Chapter 5
Image Segmentation

Image segmentation was chosen as it provides a method for identifying
the fish in an image with pixel-level accuracy. Though some past research
[55] used the width of bounding boxes to derive pixel lengths such an
approach is not sensitive to rotation. As only two points may explain the
inferred bounding boxes of an object detector, such an approach is limited
by the requirement of fish being parallel to the X-axis of the image, as
the width of the bounding box is not representative of the length of a fish
otherwise.

The use of image segmentation provides a significant advantage in
these cases in that the pixel lengths of fish may be directly identified from
the two extremes of an inferred mask, described in section 6.2. This is a
direct result of having an arbitrary number of points to describe our in-
ference. This does mean that creating the training data for segmentation
models requires more granular information than that of an object detec-
tion algorithm. However, it also provides us with a more detailed output,
a mask of the original image, from which we may derive the contour of
the inferred region, and evaluate the shape of inferred objects. This is ex-
plored in subsection 5.3.2.

There are drawbacks to this approach. The lack of localisation results

in an absence of awareness of the limits of a single object. fish that are
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overlapping or very close will appear as a single object in the inferred
mask from a segmentation model. There are methods to overcome this,
such as Mask R-CNN [36] which leverages both the pixel-accurate infer-
ences of a segmentation model as well as the localisation properties from
object detection to provide instance segmentation. However, these were
not explored in this research as our focus was on the length estimation
of partitioned fish, these being individuals represented in the image with
no pixels joining those of another fish, so instance segmentation was not

required at this stage.

5.1 Chapter Goals

This chapter aims to describe the relevant methods for creating the data for
training the segmentation model and will analyse our approach to evaluat-
ing the quality of image masks. We specifically aim to cover the following

areas:

* how we created our mask datasets to train the segmentation model.
This will cover two different approaches for creating segmentation

masks.

* how we leverage generative adversarial networks to synthesize ad-

ditional training data.

* how we automated the cleaning of large datasets by evaluating con-
tours, to target our training to images where the segmentation model

performed poorly.
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5.2 Segmentation Method

5.2.1 Creating Segmentation Masks from Edge Derived Con-

tours

Due to the consistent camera angle and lack of glare we were able to take
many of the processes for data cleaning and contour evaluation developed
for handling the data of the first factory visit and improve upon them for
better handling of the imagery from subsequent visits. One key benefit
was being able to derive the contours of fish by applying an edge detec-
tor to the image. As the camera was fixed, known obstacles with a fixed
position could be removed.

Edge detection was performed by a canny edge detector. A 5x5 Gaus-
sian filter was first passed over our input image to reduce noise that may
produce unwanted edges in our image. A minimum value of 45 and a
maximum of 180 were used for hysteresis thresholding. This meant that
edge pixels with a value above 180 were considered, pixels between these
two values were only considered if they were connected to pixels above

the maximum and pixels below 45 were discarded.

These values were chosen to reduce the classification of edges that are
not specifically attributed to our object of interest and to capture most of
the edges of the fish, an example of the result of this step is show in image
(a) of Figure 5.1.

As contours were able to be derived from the images from the sec-
ond and third factory visits further research was conducted into whether
image masks could be generated to expedite the development of train-
ing data for the segmentation model. Though the process of automating
the generation of mask images from the contours of an edge detected im-
age was possible, it was highly susceptible to any artifacts creating edges
near the fish and required a significant amount of cleanup to remove un-

favourable masks that did not accurately represent the shape of the fish.
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However, it was able to produce accurate masks at a faster rate than draw-
ing polygons by hand.

To avoid rough edges and reduce the impact of gaps in the edge detec-
tion morphological operations were applied to the binary mask. Two mor-
phological operations were applied to identified contours, a dilate, and an
erode to create the binary image masks.

Dilate operations were used to fill in missing sections of the surround-
ing edges of the target fish. This is done by increasing the boundaries of
the white identified contours, reducing the area of the black background.
Erode operations were then conducted to reduce the area of the identified
tish edges back to a size that was representative of the size of the originally
identified object. An image created by these operations is shown in image
(b) of Figure 5.1.

From these edges, we identified the contours in the image and kept
only those of the object closest to the centre that was greater than 4000 pix-
els in area allowing us to remove all unwanted polygons. The remaining
contour was then filled by setting pixels within the polygon to 255 and the
remaining pixels to 0. The result of this process is shown in image (c) of

Figure 5.1.

The contour was then passed through a simplify function, which re-
duced the number of vertices to 50 to be more similar to a human-made
polygon, this also helped reduce jagged edges made when identifying con-
tours. A final fill was conducted on these simplified contours creating our

image mask as shown in image (d) of Figure 5.1.

This process was conducted 3 times with varying iterations of the di-
late and erode operations, as the quality of the resulting mask heavily re-
lied on the edges identified which could vary significantly, even in frames
that were chronologically close. Performing many dilates would result in
the detail around the tail being lost, it could also then cause nearby edges
found from scales or ice to merge into those of the fish resulting in con-
tours that do not closely follow the edges of the fish. Too few dilates and
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(a) Image converted to grey, an (b) A dilate and erode operation

edge detection and binary mask are conducted.
are applied.
¢) Only one contour is kept and  (d) Exterior coordinates are
filled. simplified to 50

Figure 5.1: Process for generating masks from clean images

the missing edges of fish would cause gaps in the mask that our simplify
could not amend. As such a thorough final human review was used to
select which mask from the three automated datasets best fit each image,
images which had no mask that closely followed the shape of the fish were

removed.

5.2.2 Annotation

For images in which quality contours could not be created through edge
detection, such as for images that failed the shape feature evaluation or
those not collected from a fixed camera, the VGG annotation tool [31] was
used. The tool was developed by researchers at Oxford and provides a
simple and intuitive open-source environment, hosted through a browser,
for drawing a variety of annotations such as bounding boxes and poly-

gons.
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Polygons were drawn around both the fish in the centre of the frame
and in some cases, the fish in buckets were also annotated. Only a single
class was used, as polygons were to be used specifically for length there
was no need to annotate hands also. Targeted training was used to only
annotate images in which the fish had changed position, rotation, or if the

view angle had significantly changed.

All polygon annotations were stored as CSV files, with an ID for the im-
age file that was annotated and a list of values which stored all the points
of the polygon. These had to be converted into a mask image, a black and
white representation of the image with all pixels that were annotated be-
ing represented with a white pixel, with a value of 255 and all other pixels
being black.

Training data made from images of the first factory visit had a signifi-
cant shortcoming. As the camera was not fixed for this dataset the location
of objects that may adversely affect training was highly variable. The main
drawback presented by this approach was the buckets that the fish were
being passed between were also placed on the table to allow for quick ac-
cess when placing each individual on the table. Drawing polygon annota-
tions requires far more points to be drawn than other annotation methods.
To draw a bounding box of a fish two points would be required, whereas
a polygon would start at around 15 points. Annotating each tarakihi in
a frame when there were two buckets visible would have drastically re-
duced the number of frames that could be annotated. Instead, just the fish
that was in the centre of the table was annotated in most images. The sec-
ond and third factory visits did not have this issue as the camera was fixed

and buckets were not kept on the table.

To avoid the negative training that would occur by having non-annotated
fish in the buckets present in the training data images with a single anno-
tation were cropped around the annotated polygon. 517 image-mask pairs
were created with this process. The remaining images used for training the

segmentation model were those created through the automated process, or
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manually annotated from the data from the second and third visits where

multiple fish being in the frame was not an issue.

5.2.3 Synthetic Image Generation

A PyTorch implementation of Stylegans2-ADA developed by Karras et
al.(2020) [42] was used to generate synthetic images of tarakihi. GANs
generally require large amounts of image data before realistic synthetic im-
ages may be developed, ~ 10° — 10° images are required for a high-quality
and high-resolution GAN [42]. Smaller datasets often result in the dis-
criminator overfitting, meaning that generated images suffer from a lack
of variation [42]. Karras et al. proposed adaptive discriminator augmenta-
tion (ADA) in their 2020 work to significantly stabilise training when only
limited data was available. Standard methods for reducing overfitting and
automating an increase in the quantity of training data for machine learn-
ing algorithms in computer vision generally consist of augmenting input
data, with techniques such as rotation, flipping or adding noise to the im-
age. Such techniques applied to training data of a generative adversarial
network also augment the generated images. Research into ADA sought
to automate the level of augmentation relative to the degree of overfitting
present in the generated images, without augmentation ‘leaking’ into the
generated images [42]. Automated approaches for quantifying the degree
to which the model was overfitting were explored, and an adaptive ap-
proach for controlling augmentation was proposed. Traditional methods
of measuring whether a model is overfitting to the training data would be
to evaluate its performance against a separate validation set relative to the
training set, an example of calculating the degree of overfitting with this
approach is shown in Equation 5.1. Such an approach requires an addi-
tional validation set for measurement. As GANs generally require a large

amount of data for training, the requirement of an additional imagery set
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to reduce overfitting results in a high entry barrier for the practical appli-
cation of these models.

StyleGANs-ADA literature [42] found that when the GANS model be-
gan to overfit the validation sets” behaviour was increasingly similar to
that of the generated images. Additionally, the non-saturating loss [34], as
used in StyleGANSs2 [44], diverges symmetrically around zero for both the
real and generated images as the extent of overfitting worsens. This was

leveraged to signal overfitting without the use of an additional validation

set. EID EID
ry = [ tram] - [ validation] (51)
E[Dtrain] - E[Dgenerated]
re = E[sign(Dyrain)] (5.2)

Equations 5.2 and 5.1 show two overfitting heuristics where discriminator
output for the train, validation and generated images is denoted as Dy, 4;n,
Dy atidations Dgenerated- Their mean over N minibatches is calculated written
above as F. Left; shows a traditional approach using a separate validation
set. Right; shows an approach that requires no additional dataset. For
both methods, there is no overfitting when r=0 and peak overfitting when
r=1. The probability of augmentation (p) is initialised to 0 and adjusted
every four mini batches based on this value.

This approach for adaptive discriminator augmentation paired with
the use of transfer learning was able to generate high-quality (1024?) im-
ages of painted faces with only 1336 images from the METFACES dataset.
Training from scratch also yielded significant improvements with ~ 5k im-
ages from an animal faces dataset [26], convincing images were generated
of cats, dogs and wildlife at a high-quality resolution (5122).

Despite making use of ADA, which allowed us to reduce the amount of
input data required to generate images of fish, a variety of positions and
visually different fish would enable a more diverse set of generated im-
ages, improving the performance of a segmentation model trained on this

data. In order to train a stylegans model a large number of images first had
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to be generated. The first approach used object detections to target regions
of an image to crop from the first factory visit. There were two issues with
this approach. The first was that there was a high degree of variation in
this imagery, buckets of fish that were visible in the image were also cap-
tured by this process. The second issue was that no automated approach
for evaluating the quality of object detections existed therefore false pos-
itives and inferences of fish in buckets were included in the data created.
Despite these shortcomings, this data was used to train a stylegans model
and the results were promising, synthetic fish were created. However, the
input data required a significant change to produce images that may be
used to train a segmentation model.

Figure 5.2: Results from Stylegans model trained on object detections

In order to reduce the amount of data cleaning that would be required
for imagery from the free camera system, we looked toward the data from
the fixed camera dataset. By using the automated process for generating
mask contours, described in subsection 5.2.1, we were able to generate
masks for 61327 images. These masks were then evaluated using the con-
tour features, described in subsection 5.3.2. By using the mask created
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from a simple edge detection rather than our model’s inference, we al-
lowed a greater number of poor-quality masks to be created, as the edge
detection filter would pick up the edges of any object in the scene.

The end result of this approach was that fewer instances would later
need to be manually cleaned during the review. Images in which hands
were over or touching the fish would result in a mask that included both
these items. As this mask would not have contours similar to those of
a fish this would then fail our contour evaluation process. The use of a
segmentation model would result in a greater number of images passing
our contour evaluation in which hands were close to or partially covering
tish. Though this is beneficial for estimating length, such examples would

add unnecessary complexity to our synthetic images at this stage.

After the contour evaluation, 16284 images remained. These images
were cropped using the masks that were generated from the contours of
an edge detection. A new mask was generated using the contours of the
object closest to the centre of the image pixel values within the contour
were set to 255 while those beyond were set to zero. An enclosing rect-
angle was generated by using the extreme values of the white pixels, this
enclosing rectangle was then used to determine the pixel coordinates for
the region of the image to crop.

The first implementation of this system cropped images to the region
of the enclosing rectangle and then resized images to all be 256, an ex-
ample of this is shown in the image on the left in Figure 5.3. Such an
approach did not consider preserving the aspect ratio of the original im-
ages. A StyleGANs model trained on such data would generate images of
fish with proportions unrepresentative of real fish and may have adverse

effects when using the data to train a segmentation model.

The second implementation instead used the enclosing rectangle as a
guide for where to take a 256 x 256 crop of the image. The width and
height of the enclosing rectangle were calculated and used to measure the
distance from the target crop size. The minimum and maximum pixel
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(a) Image cropped to an (b) Image cropped to a padded
enclosing rectangle of the enclosed rectangle of the contour
contour

Figure 5.3: comparison of two different approaches for cropping images

coordinates on each axis were then decreased and increased respectively.
The quantity these were decreased or increased by was half of the differ-
ence between the width or height and the target crop size on the relevant
axis, this approach focused on capturing as much of the segmented fish
in the cropped region as possible. If the enclosed region was larger than
the crop size of 256, on either axis, then the crop region would begin at
the minimum value for the enclosed region on this axis and extend from
this point to the limit of the crop size on this axis, minimum + 256. En-
closed regions that were below the crop size but were close to the edge of
the image, so that a 256® crop would extend beyond the limits of the im-
age instead had the corresponding pixel coordinate set to this edge of the

image.

For example a enclosing rectangle with pixel coordinates ((38, 50), (340, 150)

would result in a crop region at points ((38,0), (294, 256)). An example of
an image created by this process is shown in the image on the right in
Figure 5.3. This method not only allowed us to preserve the aspect ratio
of the fish but also to capture more detail from the scene around the fish,
such as scales on the table or hands placed on the ruler. Though these may
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be unnecessary complexities when simply wanting to generate synthetic
images of fish, including this information resulted in a more realistic syn-
thetic imagery set for training the segmentation model and would reduce

the number of false positive inferences for such items.

400
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FID50K

200
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100

50

Steps

Figure 5.4: Fréchet inception distance 50k

From the created dataset of 16284 cropped images, 5853 images were
removed. Images were removed if hands were covering any part of the
fish or if they were more than a fifth of the way into the image. As noisy or
rotated images were not a concern The resulting dataset was augmented
to further increase its size. Images were flipped, rotated and noise and
blur were added until the total dataset consisted of 73017 images. These
images were then used to train a segmentation model.

A PyTorch implementation of StyleGAN2-ADA [42] was used for gen-
erating our synthetic images, the official PyTorch implementation was cho-

sen for its faster training times. A Docker image from the official imple-
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mentation was converted to a Singularity environment to perform training
on a single A100 GPU for a total of 46 hours with a batch size of 16. Fréchet
inception distance 50k (FID50K) was used as our chosen metric and the fi-
nal model achieved an FID50K of 15.49 an example of images generated
by this model is shown in Figure 5.5.

Figure 5.5: Synthetic images generated by the StyleGANs2-ADA model

5.3 Automating the Data Cleaning Pipeline

5.3.1 Object Detection for Removing Unfavourable Frames

As the datasets gathered in this research were all still frames extracted
from raw video footage of fish being measured and passed over a table a
large quantity of the data had little or no information relevant to identify-
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ing or measuring the length of fish, such as those frames in which fish were
being moved over the table and the view of the fish was obstructed by
hands. There were also many frames where no fish was present an exam-
ple of which would be when researchers were getting set up with the next
bucket of fish. The first method to attempt to remove images in which fish
were obscured or not present, in the initial factory visit imagery, was by us-
ing an object detector to identify fish and hands, when hand detections did
not overlap the bounding box of a fish then we considered this a good im-
age that may provide valuable information when training a segmentation
model. As this was an exploratory method to evaluate the performance
of an object detector for sorting the large amounts of raw data a relatively
small training set was used to gauge the potential. 299 bounding boxes
were created and used to train an EfficientDet model. This method was
prone to over-predicting bounding boxes for the class "fish” and proved to
be a poor approach to sorting the large dataset.

5.3.2 Interpretable Methods for Evaluating Contours
Introduction

The second approach that was explored on data from the first factory visit
was sorting images based on the quality of an inferred segmentation mask.
This approach required the entire dataset to be inferred on by the weak
segmentation model, which was trained on only 153 images. The resulting
inference masks generated from this were then used to signal whether the
original image had a clearly visible fish, an obstructed fish, or no fish at
all. This approach was far less prone to false positives than the initial
approach using an object detector.

To evaluate the quality of inferences all contours were retrieved from
the inference masks. OpenCV’s findContours function [7] was used to

identify these and describes contours simply as a curve joining all contin-
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uous points along a boundary with the same colour or intensity.

The target contour in the image was found by comparing the areas
and distance from the centre of each contour. The contours with an area
between 4,000 and 60,000 pixels were considered and the one closest to
the centre was selected as the contour most likely to be the fish currently
being captured. This contour was then further analysed to predict its qual-
ity. This process was intended to reduce the manual sorting requirement
for this large dataset, an automated procedure was developed to sort im-
ages based on the quality of their inference. This was done as a proxy for
entropy-based sampling, this approach approximates a sampling method
for images which will provide the greatest information gain to our model

with further training.

A separate mask was generated containing only the inference in the
centre of the image. Various features were calculated from the contour
found from the remaining inference and were analysed using interpretable

machine learning techniques developed in research conducted by Nori et
al. [62].

Contour Datasets

Two datasets were created for evaluating this system, one for high-quality
segmentation masks, and another for low-quality segmentation masks.
Segmentation masks were deemed high-quality if they were of a standard
suitable for training, this meant that the entire fish would need to be in-
cluded in the mask and minimal false positive pixels would need to be
present.

The low-quality segmentation mask class was a broader category. Masks
unsuitable for training were included, as well as masks from false positive
inferences or masks generated from multiple fish overlapping that did not
represent the shape of an individual fish. This allowed us to focus our

exploration on which features the contour of a high-quality segmentation
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comprises.

The algorithm was then trained on various features calculated from
these two datasets. Some features were raw inputs derived from OpenCV’s
contours [7], others were calculated by using geometric statistics common
in particle, and remote sensing. Input features were gradually reduced
until there were only 3, keeping the system simple and reducing the de-
gree of overfitting to the training data. Fewer inputs meant that inferences
were always justified based on a few input features and were, therefore,
more easily interpreted.

InterpretML

InterpretML [62] was chosen as it provides insight into both global and lo-
cal features. Research into interpretable machine learning has been gain-
ing traction in recent years [56], interpretable methods allow for greater
trust in the systems in which they are integrated, and decisions are less
likely to be challenged if their justification is clear. By using interpretable
machine learning techniques we can not only develop robust automated
systems to distinguish between good and bad polygons but we can also
explain why these decisions were reached, and which factors contributed
to the final result.

As part of InterpretML research, a new algorithm was developed with
a focus on interpretability, the Explainable Boosting Machine (EBM). EBM
is a generalised additive model (GAM) and uses modern machine learning
techniques, one of which is gradient boosting, to learn feature functions.
Care is given to restricting the boosting procedure to a single feature at
a time, learning from features is done iteratively, so feature contributions
will be diminished if there are other features that are very similar. How-
ever, a very low learning rate is used and as a result feature order does not

matter.

9(E(y)) = Bo+_ fi(z;) (5.3)
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Where g adapts the GAM to either classification or regression, via a link
function. f represents some function explaining the relationship between
the variable j and the target class, it is denoted as:

k
f(z) = z_: Brbr() (5.4)

The equation for GAMs is similar to that of logistic regression. Where
it differs is in the explanation of relationships between features and the
target class. GAMs do not require a linear relationship but instead sup-
port arbitrarily complex functions [48]. EBMs go one step further than
this and detect pairwise interactions when evaluating features. These are
automatically included in the model, if found to be significant, and are
displayed in the feature importance summary (example shown in Figure
5.6. The inclusion of these pairwise interactions in the GAM architecture
was first explored by Lou et al. [49] and is found to increase the accuracy
of the models in [62] without sacrificing intelligibility. This form of GAM
is called GA2M [49] and is represented by Equation 5.3.2.

9(EW) =Bo+ > filx) + > filw, x)) (5.5)

The effect of the input, at its various values, in predicting the likelihood
of the positive class is more accurately represented by using this equation
when a non-linear relationship exists between the input variable and the
target class.

As EBM is an additive model feature scores are easily interpreted due
to their modular contribution to the prediction[62]. The contribution of
each feature may be visualised by plotting f(x) from the Equation 5.3.2.
This non-linear relationship is described as shape functions in the research
conducted by Lou et al. [48].
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Global scale interpretability provides the importance of each feature,
this is calculated by using the mean absolute score, allowing us to ascertain
which features are most important in determining whether a contour is
highly likely to be that of a fish or not.

On the local scale each input feature has a score to determine its im-
pact on the predicted class, this score can be both positive; increasing the
likelihood that the observed data belongs to the positive class, or negative;

decreasing this likelihood.

Shape Factors

Several features were calculated from the contours found in the segmented
image, in the form of shape factors, to better evaluate their shape. Shape
factors are used for analysis in a variety of fields such as image analysis
and microscopy, where the shapes of objects must be differentiated. The
notable geometric properties of fish contours that were explored included
circularity, compactness and complexity. Podczeck (1996) [67] explored
the use of shape factors to assess the shapes of particles. As part of this
assessment 3 of the considered parameters for describing shapes analysed
the deviations from standard shapes such as a square, triangle and circle.
The deviation from a circular image was identified as a potentially useful
factor and was included in our analysis of viable features.

Deviation from a circular image [67].

area

(5.6)

T 2
15m

Where s,, is the longest side of a minimum enclosing rectangle.
Compactness is a measure of the simplicity of the boundary of a shape
[11], equidistant vertices from the geometric centre of the shape are an
indicator that a shape is very compact, and a circle is the most compact

shape. Two measures of compactness were considered:
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the Richarson compactness ratio [71].

O (5.7)
perimeter

Reock compactness ratio [69].

area
7+ radius? 9

A popular measure for complexity is the Schwartzberg score, often
used in geographical information systems [52], which calculates the ratio
of the perimeter of a shape to the circumference of a circle with an equal

area.

Schwartzberg complexity [76].

perimeter
2 x /T * area

Finally, two additional features were calculated using the characteris-

(5.9)

tics of the external border of our shape and the pixel length of the contour,
calculated from a minimum enclosing circle, as a scale factor. These were:

Podczeck’s elongation calculation [67]

perimeter
—_ 5.10
length ( )

The second equation was an adaption of Podczeck’s elongation, in-
stead exploring the number of vertices relative to the length of the shape,
the name coordinate complexity is used to refer to this calculation and is
calculated as.

ext.coords

A1
length (®-11)

Implementation

The data used in training the explainable boosting machine had to be care-
fully selected using a mixture of both inferred and manually created seg-

mentation masks. 160 of the masks included in the positive class were
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circ_dev
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coord_complexity
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circ_dev x coord_complexity

elongation x coord_complexity

Figure 5.6: feature importance from three inputs for the final GAM trained
on 1100 contours. Circle deviation was the most important feature, fol-

lowed by elongation and finally coordinate complexity.

manually drawn, and the remaining masks were inferred. In earlier itera-
tions, human-made masked images made up roughly 50% of the positive
class. A larger number of masked images that were created from human
annotated polygons were included in the training data to ensure quality
contours were being used. However, this resulted in inflated feature im-
portance being given to the number of exterior coordinates, due to clear
differences between the two methods of creating masked images. The first
run of the EBM used a total of 35 features. A larger number of features
than desired was used in early implementations, this was done to eval-
uate feature relationships and analyse the input features. By including
many features and identifying which are best at explaining the contours
of a fish.

Additional features included:
1. Aspect Ratio

2. Perimeter relative to the area
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3. Area
4. Perimeter
5. number of vertices

6. All 24 moments [7]

After running interpret ML [62] with many input variables, those with
a considerable contribution in identifying the target class were kept and
other variables were removed. As interpretML iteratively calculates fea-
ture contribution scores; variables that are highly correlated will subse-
quently have a diminished score. For groups of highly correlated inputs,
only a single variable was kept. This process was repeated until only 3
features remained; circle deviation, elongation and coordinate complexity.
The feature importance of a model trained on only these 3 features is illus-
trated in Figure 5.6. Several pairwise interactions are also identified, one
of which, circle deviation and elongation are shown in Figure 5.7.

5.4 Results and Analysis

5.4.1 EBM Shape Function Interpretation

This subsection showcases the interpretability of the EBM by illustrat-
ing the shape functions learnt during training on the shape features (Cir-
cle deviation, elongation and coordinate complexity). The graphs shown
here are a direct visualisation of the contribution to both the positive class
(high-quality contours) and negative class (low-quality contours) within
the range of observed values present when training the EBM. A contribu-
tion score greater than zero means that the relevant shape feature value
was found to be associated with a high-quality contour, while a shape fea-
ture value with a contribution score of less than zero is associated with a

low-quality contour.
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circ_dev x elongation

elongation

circ_dev

Figure 5.7: Graph showing the pairwise relationship between elongation
and circle deviation. A colour map for contributing scores is shown on the

right

From the visualisation of the pairwise interaction between circle devi-
ation and elongation, it is shown that Objects with an elongation value
greater than three and a circle deviation below 0.3 have a negative score.
This suggests a contour with a circle deviation and elongation in this range
is likely one that is not representative of a fish. A low elongation and low
circle deviation are associated with a slight positive score, contributing
toward the model deciding the features are those of a good fish contour.
Finally, an elongation with a value below 2.5 and a circle deviation above
tive was found to be a strong indicator of a good fish contour, with a score
greater than four. This is an important distinction to make, as the circle
deviation shape function (Figure 5.8) alone, shows a negative response at



5.4. RESULTS AND ANALYSIS 81

circ_dev

Score

0.2 0.4 0.6 0.8

300
200
100

0

Density

0 o 0, 0
e e
25972y ?se 975964 s %> 5,& 85702y 065,025,025 O3 85,295,

Figure 5.8: f(x) from Equation 5.3.2 plotted for circle deviation

higher circle deviation values. By bringing the instances that are more dif-
ficult to distinguish into a score function with greater dimensions we are
able to better explain their contributions and improve the model’s accu-
racy.

Circle deviation ranges between zero and one, values close to one sig-
nify our contour is highly similar to a circle whereas values close to zero
signify a very dissimilar shape. The circle deviation graph, Figure 5.8,
shows the contribution scores found from the training set of calculated
contour features. The varying values for the deviation from the shape of
a circle are shown on the X-axis, while the contribution is shown on the y.
Contours with a very high circle deviation, with values less than 0.24, are
commonly found for contours that are not of a quality fish segmentation.
Very circular contours, with values closer to 1, had a similar score of -2.41.
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Figure 5.9: f(x) from Equation 5.3.2 plotted for the elongation

Circular deviation scores between 0.24 and 0.4 had a positive contribution

to the likelihood of our shape being that of a quality fish segmentation.

The elongation shape function also shows that lower values are at-
tributed to a good contour of a fish. Tarakihi contours had an average
elongation of 2.70 while contours of poor inferences had an average of
3.36 meaning a greater perimeter relative to the length. This was caused
in some instances by a rougher border of the segmented object. An ex-
ample of this is shown in Figure 5.10 where the image on the left, a mask
created from a hand-drawn polygon, has an elongation value of 2.88 and
the image on the right with a far rougher surface has a value of 6.56.

A density plot below the elongation shape function in Figure 5.9 shows
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Figure 5.10: Comparison of a mask from a human-drawn polygon to that
of an inference of a bucket of fish

the number of observed instances in the range of values. For example, for
elongation values in the range 2.46 — —2.73 there were 335 observations,
while contribution scores in the range 4.37 — 4.65 were based on only 11
observations. This allowed for a better understanding of how reliable con-
tribution scores calculated for these ranges were. Contribution scores dis-
played at high elongation values (> 4.1) and high circle deviation values
(> 0.518) are based on fewer than 25 observations and care must be taken

when making decisions based on this information.

Figure 5.11 shows a local explanation of our interpretable model on a
single instance. This illustrates the shape features values (Y axis) and their
contribution scores (X axis), calculated from a segmentation inference, that
resulted in the prediction that the observed contour was that of a high-
quality fish.

The high negative intercept means that we assume the observed con-
tour is not a fish unless the shape features are similar to those of a fish.
In this instance we see that the circle deviation (0.31) is within the range
we would expect of a quality fish contour, as is the elongation (3.41). The
paired relationship of circle deviation and coordinate complexity resulted
in a negative contribution score however this is not significant enough to

suggest our contour is not that of a fish and so the predicted class is a
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Predicted (1.0): 0.818 | Actual (1.0): 0.818
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Figure 5.11: Visualisation of the contribution scores for each shape feature
for a single inference of the interpretable model. Negative shape features

are coloured in blue, positive contributions are orange and the intercept is

grey.

high-quality fish contour with a prediction score of 0.818. By using these
interpretable techniques, we may demonstrate why certain contours are
used in estimating the lengths of observed fish and why others are dis-
carded. As keeping undersized catch may result in a fine, being able to
justify why a length was or was not recorded provides a benefit to the
stakeholders, in the form of an accountable system that may be tailored to
suit their needs. Should new species of fish wish to be added in the future,
the explainable classifier may be trained on the contours of these new fish.
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5.4.2 Identifying Poor Segmentation Inferences

A second check was created, based on findings from the shape functions,
for contours that did not pass the EBM. A contour that failed the first check
but still had a 0.2 < circdev < 0.41 was considered to potentially have a
clearly visible tarakihi. This range of circle deviation values was chosen
as the contribution scores were still variable, particularly on the lower end
of circle deviation values. As this is a classification problem, if all val-
ues within this range were of the negative class we would expect to see
a consistently low score, as is observed at values greater than 0.4. There
was also a large number of observations in this range, so the inference
that contours within this range are likely to be those of a fish is based on
many examples. Circle deviation was also the most important feature in
identifying quality fish contours and should therefore be a good identifier.

Any contour that did not meet these requirements was assumed to not
contain a clearly visible fish. This approach meant that an extra neural net-
work for sorting the data was not needed. We could train a segmentation
model to infer on the large dataset and iterate improvements on the same
model which would also be used for finding the pixel length of inferred
fish.

A simple test was conducted on this process, placing images from a
test set of 948 images into folders relative to their true and predicted class,
Figure 5.12 shows the confusion matrix from this test. Of the 446 images
that were predicted as the negative class 94 had a circle deviation between
0.2 and 0.41, these were placed in a separate directory for further investi-
gation. 15 of these images were the false negatives illustrated in the confu-
sion matrix, meaning only 1 false negative did not pass this check. Of the
79 remaining images, 4 were of buckets of fish and 27 were false positive
inferences, the remaining 48 images were of fish.

The use of ML models’ inferences to sort the data to be used for fu-

ture training may reduce the performance of the model when just using



86 CHAPTER 5. IMAGE SEGMENTATION

entropy-based approaches as it may lead to further encouraging model bi-
ases if not carefully monitored. If we only consider what items a model is
unsure about we would miss the cases in which the model is confidently
incorrect, as such, negative predictions were subject to scrupulous manual

correction.
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Figure 5.12: Results of the contour evaluation model on a test set of 948

images

The performance of the final model with reduced features is illustrated
by the confusion matrix in Figure 5.12. A focus was given to high recall
values for the positive class (quality fish contour) in preference of preci-
sion. Though the purpose of this method was to reduce the number of
false positives affecting length estimations, minimizing the likelihood of
not considering contours that would help when calculating the true length
of an observed individual was also a priority. Allowing some false positive
to pass was less important than falsely predicting a quality fish contour.
As such the precision of this model was 0.863 while the recall stood at
0.964.
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5.5 Chapter Summary

Our first goal of this chapter was achieved by discussing our two ap-
proaches to creating segmentation masks. The first used the contours that
resulted from applying an edge detection on images of fish that were not
touching any other objects such as the ruler or hands. This approach was
successful in creating 1154 masks (dataset 2) for images from the second
factory visit. The second approach was used in difficult instances where
the automated approach for creating masks was insufficient. This used the
VGG annotation tool [31] to create 517 masks from the first visit.

This chapter presented our approach for generating synthetic images.
This began by first creating a large dataset of image masks, derived from
an edge detection. The contours found from these masks were then evalu-
ated, using an EBM, to determine whether they were likely to be those of
a fish. The images in which there was a mask that passed this check were
then cropped, based on the size and location of the mask. A PyTorchim-
plementation of stylegans with adaptive discriminator augmentation was
trained and used to generate 700 synthetic images of fish which were also

manually annotated, achieving our second goal.

Finally, we demonstrated the use of interpretable techniques for pro-
viding greater insight into shape features, that were derived from con-
tours, and how they may be applied to remove inferences that are of low
quality or those likely to be false positives. We also explain that this pro-
cess provides the various stakeholders, such as fisheries organisations or
scientists, with an accountable system that may justify why contours were,
or were not, used for calculating the length. The shape functions created
by the explainable boosting machines allowed us to identify a target range
of values for circle deviation, one of the final three shape features included
in the model, which was commonly associated with high-quality fish con-
tours. Contours that had a circle deviation within this target range, but

were not identified to be good contours by the model, were then flagged
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as contours that may be of fish but just a poor mask. This allowed us to tar-
get our human conducted annotations on the images in which the model

was performing poorly.



Chapter 6
Length Prediction

So far we have presented our methods for collecting data and creating
segmentation masks. The process for deriving the contours from these
masks was discussed and an approach to only keep those of high-quality
fish was presented.

Providing accurate lengths is the next stage of our research. We hope
that by providing millimeter lengths for all partitioned fish that are pre-
sented below a camera, more informed decisions may be made regarding
not only the quantity of undersized fish being caught but also the over-
all catch. Such a system brings benefits for scientists monitoring the catch
size and count estimates, by providing more accurate length datasets with
a number of samples far greater than current methods are capable of pro-
ducing [16]. Commercial fishing vessel captains also benefit from these
statistics by having a better idea of how close they are to meeting their
quota and we hope to better avoid areas where there are large quantities

of undersized fish.

6.1 Goals

A major goal of this research was to identify the millimeter lengths of fish

from images, and this chapter discusses the methods for ascertaining this

89
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by using both a segmentation inference to extract the pixel length of our
tish, in subsection 6.2.1), and the use of a calibration pattern for calculating
the scale factor to translate pixel lengths to millimeters, in subsection 6.2.2.
To achieve this goal, we will investigate the following topics:

e an approach of extracting pixel length from the contours of a seg-

mentation mask.

* how to calculate the scale factor of the image by using a calibration

pattern.

* how to gather accurate lengths from a video with multiple frames of
each fish.

* how well models trained on the same number of images from differ-

ent datasets may predict lengths of fish from videos.

* how to adjust final length estimations to account for unknown error

in predicted lengths.

6.2 Methods

In order to estimate millimeter lengths, two distinct values had to first
be calculated. These were the pixel length and a scale factor that relates
the pixel size to millimeters. The pixel length is extracted by calculating
the diameter of a minimum enclosing circle of the pixels inferred as the
positive class. The scale factor was calculated by relating the projected
checkerboard tile size to the known size of 23 millimeters.

6.2.1 Pixel Lengths from Contours

Extracting contours from an inference mask image allowed us to cluster
pixels classified by the segmentation model into larger objects and find
the extent of an inferred fish. This clustering of inferred pixels is done



6.2. METHODS 91

by following a continuous line around the edge of the inferred mask [7],
which is represented by pixels with a value ranging from 0 to 255, pixel
values are calculated by multiplying inferred confidences, ranging from 0
to 1, per pixel by 255.

No Threshold

pixel value
—_
=}
[a)
T
|

Truncate Threshold

200 - .
100 /—\/—\ .
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pixel value

pixel value

O, — . -

Figure 6.1: Visualisation of how pixel values are altered by different

thresholding techniques

A truncate threshold [9] was initially applied to the masked image, this
sets the value of all pixels that are above a threshold of 100 to the threshold
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Figure 6.2: Comparison of how a minimum bounding circle is altered
when using a truncate threshold (top) and a binary threshold (bottom).

value, while other values remain the same. However, this approach led
to artifacts near fish segmentation being included when identifying their
contours, and pixels of a low value that connected one segmented object to
another resulted in the second object being included in the contours of the
original target. To reduce the likelihood of including unwanted objects in
our target contour a second thresholding approach was explored, a binary
threshold[9]. The binary threshold instead sets all values at or above the
threshold to 255 and all other values to 0. This new thresholding method
helped remove these artifacts being considered as part of the segmented
object’s contours.

Figure 6.2 shows the difference between the two approaches for thresh-

olding. The diameter of a minimum enclosing circle is used to calculate
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the length of our target contour, this minimum enclosing circle is visu-
alised in the example to show how recorded lengths may be affected by
poor thresholding. The enclosing circle drawn on the image with the trun-
cate threshold is stretched to include the nearby artifact, resulting in a less
accurate pixel length measurement resulting from the skewed circles” di-

ameter.

The moments of each contour were calculated, from which the centroid
points were found and spatial moments were used to compare the posi-
tion of each contour in the image.

Spatial moments were calculated with the following equation [7]:
My =3> 2"y I(x,y) (6.1)
Ty

where x and y represent the pixel index of the row and column. I is the
pixel intensity at given coordinate Xx,y.

The area of the contour was calculated as the 0" order moment with:
My = ZZI(%?/) (6.2)
r oy

By using a binary representation of the inference mask the result of this
equation is a sum of the pixels with non-zero values.

The centre of the contour was calculated as the sum of the non-zero
pixels on the X-axis (1) divided by the total number of pixels (My). The
same is done for the y axis with (M, ):

(6.3)

OpenCV was then used to create a minimum bounding circle around the
contour closest to the centre of the image, that had an area greater than
4000 pixels and had passed our contour evaluation process described in
section 5.3.2. This approach allowed us to select the fish closest to the cen-

tre of the image if there was more than one fish visible in the image.
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If no contour of this size was within 210 pixels of the center of the image
we assume there was no fish visible in the frame. This distance was mea-
sured as the euclidean distance between the center of the contour and the
centre of the image.

6.2.2 Calculating the Scale Factor

To calculate the pixel to millimetre ratio the known size of an object had to
be compared to its size in the image. The internal corners of the checker-
board pattern, if visible in the frame, was first located by converting the
image to greyscale, a binary threshold is applied and dilate operations are
performed to separate connected black tiles. The contours of the black
tiles are extracted and only quadrangles are kept. From these, the inter-
nal corner that is positioned optimally between the white and black tiles
is extracted, this is a single keypoint from the image.

This was an adaptive process to account for checkerboard patterns
(z,y) that were only partially visible, starting with a checkerboard size of
8 x 6 and decreasing the search parameters for the checkerboard that may
be present in an image down to a size of 3 x 3. If a pattern was not found
by this stage the pixel to millimeter ratio was not calculated, instead, the
average pixel to millimeter ratio from the dataset was used. The pixel dis-
tances of all 4 sides and the millimetre distances were calculated based on
the size of the grid that was found in the image (z,y). Estimates for the
number of millimetres per pixel were calculated by getting the average of
each side’s length divided by its pixel length. This value was multiplied
by the pixel length of the fish to give its length in millimetres. The pixel
to millimetre ratio for a single side of the checkerboard pattern was calcu-
lated with the following equation:

Ly
> Npiz
The length in millimetres is denoted by L,,,,,, and }; N,;, is the sum of the

R= (6.4)

pixel distance for the given side (i).
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The length calculation for an individual fish from the diameter of the
minimum enclosing circle in pixels D,,, using the pixel to millimetre ratio
from each of the 4 sides }_; R of the checkerboard pattern is calculated as
follows:
iR

4

L = Dy, * (6.5)

6.2.3 Comparing Measured Lengths to Lengths from Im-

ages

To gauge how similar lengths derived from images were to those mea-
sured on-site, a preliminary step was conducted prior to the application
of machine learning inferences. The two methods applied used a human-
supervised system to generate lengths from an image. These lengths were
then compared to lengths gathered on-site to determine whether the use
of a calibration pattern was sufficient in estimating length.

Images were first paired with the individual fish that was measured on-
site. As recorded lengths were ordered chronologically, extracted frames
from the videos could be matched up to each measured length by manu-
ally grouping all frames of a single fish into a directory. Fish were mea-
sured before being placed on the table a gap in visible fish followed by the
fish being measured was almost always the sign that a new fish was being
observed, notes were taken at the time of measurement to record when un-
usual activity had happened to assist in distinguishing individuals when
later reviewing the footage.

A single frame in which a tarakihi was clearly visible was selected from
the collection of frames for each measured fish, to explore whether reli-
able length measurements could be identified from a still image, the pixel
length was extracted from this image, and by using the calibration pattern
a length in millimeters was predicted. Two approaches for achieving this
are explored in subsection 6.3.1.
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Figure 6.3: fish length measured in MATLAB

6.3 Experiment Design

6.3.1 Manual Length Extraction

The lengths of fish in images were first measured in an application in MAT-
LAB. This allowed a user to place a line on an image by clicking to position
its endpoints, a known length in millimeters may then be assigned to this
line. This known length is then used to produce the millimeter lengths
of additional lines in the image. Using this tool a line was created along
7 tiles of the calibration pattern and the known length of 161 millimeters
was assigned to this line, this was calculated by multiplying the number
of tiles (7) by the tile size (23). To produce a length for the fish a second
line was placed along the fish from one extremity to the other, an example
of this is shown in Figure 6.3.



6.3. EXPERIMENT DESIGN 97

6.3.2 Contour-Based Length Extraction

The second approach for extracting lengths from images used the method
for extracting contours from masked images, first described in subsec-
tion 5.2.1, we established a human-supervised approach to quickly extract
lengths from images. This method provided a faster approach to mea-
suring length than using MatLab. However significant data cleaning had
to be done by a human reviewer to remove all frames where hands were
overlapping fish, or within two centimeters as this approach was not able
to distinguish the class of each contour. The calibration pattern was found
using the same approach used in subsection 6.2.2, and contours were de-
rived from the edge detected image.

After the edge detection, edges of known objects in the image were re-
moved, such as the ruler and the calibration pattern. This was done by
setting the pixel values to zero in areas of the image where these items
were present, as the camera and calibration pattern remained fixed this
only had to be done once for the imagery where fish were not being mea-
sured. Where fish were being measured the pixels in which the ruler was
visible were amended every few images to avoid the ruler’s edges being
included as part of the fish length measurement. Contours were then pro-
duced from this image using the same process of finding contours from
segmentation inferences. Figure 5.1 shows an example of this process that
was further developed to also generate masks, this process is described in

section 5.2.1.

For the images of fish that were measured on-site a predicted length
was outputted for every large contour found, using the pixel to mm ratio
from the calibration pattern present. This was then passed to a human re-
viewer to select the correct contour that represented the fish present in the
image. As no machine learning was used at this stage, all large contours
were identified. As such, a human-supervised process was used to ensure

that derived lengths were those of fish and not of other objects present
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Figure 6.4: example of bad non-ML-derived contours

in the image such as hands, the calibration pattern or the contours of the
tables” edges.

The human-supervised approach for selecting the correct contour was
done by displaying the image and showing a bounding box around the
contour that the predicted length was currently being derived. A user
could cycle through each contour by clicking. If the bounding box tightly
fit the fish then the length was recorded. When the bounding box did not
tightly fit the fish as shown in Figure 6.4 then the extruding pixels in edge
detection were removed manually. This approach was more reliable and
produced fish lengths from the images that were closer to those measured
on-site than the MATLAB application, this was likely due to using multi-
ple points of reference from the calibration pattern to find the pixel to mm
ratio, whereas the MATLAB application used only a single side.

6.4 Deriving Lengths from Videos

Inferring lengths of individual fish from multiple frames was an important
stage to get right. To show that this system may predict lengths for footage
gathered on fishing vessels, lengths inferred from the automated process
would need to match up with those lengths measured on-site, when or-
dered chronologically. This would mean that double counting or missing
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fish would have a significant adverse effect when comparing true and pre-
dicted lengths.

Several challenges arose from deriving lengths from multiple segmen-
tation masks. Prior work in generating lengths from inferred images had
always focused on a single example per fish, in most of these images fish
were clearly visible and did not have other items partially blocking their
view. As a singular length must be recorded lengths over multiple frames,
special care had to be taken to ensure the right lengths were derived from
segmentation inferences. Partial inferences when hands were covering

fish was one instance that would significantly alter measured lengths.

6.4.1 Preparing Data

Length measurements from videos were estimated by first inferring on all
frames containing fish from each of the videos from the third visit, exclud-
ing the first bucket of fish. Frames from each video were already sorted
into the usable frames as all frames containing an individual fish were
placed in a sub-directory for that bucket as explained in section 3.4. All
images from these sub-directories were copied into a singular folder, cre-
ating a large dataset of all the images containing fish, this allowed us to
remove large empty sections of the video when no fish were visible, re-

ducing the time needed to process the imagery.

6.4.2 Singulation over Multiple Images

After inference, all images and masks were ordered chronologically, by
using the Unix timestamp of the video from which the image was ex-
tracted and the images corresponding frame number. Ensuring that im-
portant temporal information that may assist in the evaluation of pre-
dicted lengths was not lost when reading frames and masks.

Image-mask pairs were read to retrieve the length, in millimetres, of

the fish in the image. The pixel to mm ratio was retrieved from the image
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Figure 6.5: Shows a single frame from the video inference process con-

ducted on imagery gathered in the third factory visit

by using the calibration pattern, if no pattern was found then the average
from the dataset was used, for the third visit, this was 0.859. Contours of
inferred fish from the mask were retrieved and used to retrieve the pixel
length of the fish. Each image is saved after adding text positioned in
the top left of the image for the current predicted length and the count of
tish observed in the current video. A polygon is also added to the image
to show the contours of the inferred segmentation mask. Single frames
are then converted to a video by using FFmpeg [82], a video encoding

software.

The median of similar lengths was used to determine the estimated
length of the current fish, the median was chosen as false positives could
skew the recorded max length if the measured contour significantly in-
creased in size. Lengths were considered similar if they were within 1ecm
of the median length. If a length was greater than 1 centimetre above that
of the estimated length for the current fish then we would store this value
and only if there are 6 consecutive frames with a similar length do we con-
sider this to be the new estimated length. The estimated length was set to
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zero after consecutive frames where no fish was present to ensure that the
estimated length of one individual would not affect the recorded length of
the following fish.

Allowing the estimated length for a fish currently in the frame to in-
crease in size but not decrease, allowed us to infer lengths closer to the
ground truth by reducing the impact of lengths when the view of the fish
is partially obstructed. For instance, when hands were placing the fish
down on the table, frames with a consistent length measurement were not
uncommon but were not representative of the true length of the fish. By
omitting previously measured lengths for the current fish when the mea-
sured length significantly increases we can remove the measured lengths
from partially visible fish from affecting the recorded length when calcu-
lating the median.

False positives are a particular cause for concern as these would in-
crease the lengths of measured fish should the contour of a false positive
object join that of a fish. A serious infringement on catch size limits can
lead to fines of up to 10,000 dollars and breaches in exceeding daily catch
limits can result in criminal charges [14] ensuring that the model does not
over predict the lengths of fish and accurately counts the number of fish
observed is of the highest importance.

To reduce the number of false positives every contour from the inferred
mask is subject to an evaluation through the processes described in sub-
section 5.3.2. If multiple contours made it through these checks then the
pixel length of the one closest to the centre was taken.

Double counting individuals was another issue encountered, to reduce
the likelihood of this occurring a check was implemented to ensure that a
reasonable number of frames had passed since a fish had been observed
before we assume the fish currently present is a new one. There would
have to be 50 consecutive frames with no segmented pixels that pass the
contour evaluation before we assume that the last fish observed has left
the scene.
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Once all frames have been processed and text for the length and count
have been added images were saved and named according to the order
in which they were read, these are then converted to a video with FFm-
peg [82], an open source converter for video and audio. FFmpeg uses
tilenames to order the images when reading files for video conversion, by
sorting the image-mask pairs prior to the processing we ensure that each
image is saved with a time stamp relative to its chronological position and
temporal order is retained in the outputted video.

Two comma-separated values (CSV) files are created as part of this pro-
cess. CSV files are plain text files only supporting the use of text and num-
bers, consisting of rows, and columns separated by commas. Storing data
ina CSV format allows it to be easily interpreted by both humans and most
spreadsheet software such as Microsoft Excel. This format was chosen to
ensure easy accessibility to the data created by this system.

The first CSV file contains a row for every frame in the video, with the

following columns:

¢ Frame count: a counter for the number of frames observed in the

current video
¢ Input file: the file name for the current frame

¢ Frame ID: an identifier for the current frame comprised of the UNIX
timestamp of the video and the frame number from that video i.e.
1653948000-1006118

¢ Inference area: the total area of fish-like contours in the current im-

age
e Total count: the total number of fish seen so far
* Median Length: the maximum length for the current fish

* Current Length: the length measured in the current frame
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The second CSV file contained a single line for each counted fish, with
just the frame count, input file, total count and the median predicted length.
Having a single file with the outputted lengths for each individual allows
users to easily gain insight into the length information for all the fish ob-
served. This also provided an easy way to compare predicted lengths from
the video to the ground truth lengths from the third factory visit.

6.5 Results

6.5.1 Comparing Methods for Manually Extracting Lengths

from Images

A small experiment was conducted to compare both methods for extract-
ing lengths with the human supervised approach. This experiment com-
pared the lengths calculated from both approaches and compared them
to the lengths measured on-site, shown in the first column in Table 6.1.
The second column shows lengths calculated by using Matlab. The third
and fourth columns show the lengths that were calculated using the semi-
automated approach of estimating lengths from edge-derived contours,
with the third showing those lengths estimated from the raw images and
the fourth column showing lengths calculated from images that had been
warped by the process described in section 4.2.1.
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Table 6.1: compares the results of two human-conducted approaches for

calculating lengths from images.

Predicted
True length Matlab | Contour | Unwarped Contour
360 350 343.6 351.7
425 405 406.4 415.8
400 381.5 | 379.9 389.4
310 2947 | 2935 299.9
395 3719 | 371.8 382.7
490 465.9 478.4 478.5
385 347.7 351.7 360.4
345 3224 | 3228 329.4
410 389.3 | 390.7 400.2
280 260 259.2 263.5
505 463.8 | 466.6 478.4
415 372 379.5 389
410 3814 | 379 386.2
490 458.9 459.4 472.8
420 396.7 | 395.1 495.6
405 381.6 | 382.6 391.5
420 404.2 397.8 408.6
480 459.8 | 457.7 469.4
380 371 368.7 377.3
435 422.2 4184 429
500 4825 | 4779 493.1
415 396.5 | 400.5 410.3
375 370.6 | 367 375.5
340 333.2 | 3339 340.4
Absolute difference | 21.133 | 21.162 14.766




6.5. RESULTS 105

The average absolute difference of estimated lengths minus true lengths
is shown at the bottom of Table 6.1. These results show that both the ap-
proaches for manually extracting lengths from images were on average
around 21 millimeters off the true lengths. The contour-based approach
using warped images produced length estimates that were closest, on av-
erage, to the true lengths.

Though the results from the approach in Matlab achieved slightly bet-
ter results, Matlab was prone to freezes when loading a new image from
which the length was to be calculated. As such, the contour-based ap-
proach was used for deriving future manual length estimations from im-

ages.

6.5.2 Results: Synthetic Versus Real Datasets

The data used in this test consisted of a combination of real and synthetic
images of fish. Each of the three models that were trained as part of this
test used 700 images. Real images used in training both the model trained
on only real imagery and the model trained on a mix of real and synthetic
imagery were randomly chosen from a reduced dataset of annotated im-
ages. This image set was created by splitting the entire annotated image li-
brary (our holdout set was kept separate and not included in this split) into
a training and validation library with an 80/20 split, respectively. Training
images were augmented by applying a horizontal flip (50% probability),
rotation, brightness and gamma changes as well as Gaussian noise, to re-
duce overfitting.

The validation set contained 433 human-made image-mask pairs. This
dataset contained images from all three visits and included images taken
from both the fixed camera in the second and third visits and the free cam-
era in the first visit. These were used for validating each of the models at
the end of every epoch. During training, the model iteration that achieved

the best validation loss was saved and used later for comparison.
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For evaluating the performance of segmentation models trained on dif-
ferent kinds of imagery, three different training datasets were created. The
tirst dataset contained 700 synthetic images and binary mask images cre-
ated from human-drawn annotations.

The second dataset contained 700 image-mask pairs of real fish; this
dataset was created by randomly shuffling a list of all the real images with
annotated masks and selecting the first 700. Imagery in this dataset was
entirely from the first and second factory visits.

The final dataset contained 700 image-mask pairs with 350 real images
and 350 synthetic images generated by the StyleGANs model, both these
datasets were created by selecting image names from a randomly shuffled
list.

Table 6.2: shows a breakdown of the data used for each model in the ex-
periment comparing model performance using synthetic data.

Training Data Source Comparison
Model Source
Visitl Visit2 Visit3 Synth

Synthetic || 0 0 0 700
Real 140 522 38 0
Mixed 83 252 15 350
Holdout 114 144 43 0
Validation || 93 283 57 0

Models were trained for 60 epochs, with 87 steps per epoch. An Ef-
ticientNet backbone, with the sigmoid activation function, was used for
each U-Net model, and Imagenet encoder weights were used to perform
transfer learning. Each model’s performance on the holdout set was mea-
sured and is shown in Table 6.3. The holdout set consisted of 301 anno-
tated images, with 41 images from the first visit, 116 transformed images

from the second visit and 144 transformed images from the fixed camera
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imagery set from the third factory visit.

In Table 6.3 the size refers to the total number of images used when
training the model Inference masks were subject to a 50% threshold for
both the intersection over union; which used the Jaccard index [40] and the
F1 calculations; which used the dice coefficient [30]. Inferred images are
denormalised between the 2" and 98" percentiles and prediction mask
values were limited between 0 and 1 before being multiplied by 255.Loss
was calculated as a combination of Dice loss and binary focal loss, which
introduces a hyperparameter, to penalize difficult classification examples
more than easy ones, generalizing binary cross-entropy. The loss was cal-
culated as dice + (1 * focal).

Table 6.3: Compares the performance of the models trained on the three
different datasets and a final model that included 2020 real images (all

annotated images not in the validation or holdout set) and 700 synthetic

images.
Model Performance Comparison
Model Metric
Size | Loss 10U F1 Score
Synthetic 700 | 0.084881 0.92409 0.95915
Real 700 | 0.016017 | 0.9875 0.99367
Mixed 700 | 0.014691 0.98811 0.99399
All Real 2020 | 0.016166 | 0.98554 0.99268
All Mixed 2722 | 0.014172 | 0.98747 0.99366

All three models achieved an IOU of over 90%. Performance of the
model trained purely on synthetic data surpassed expectations on the hold-
out set as we had anticipated false positives from other objects in the scene
to reduce this score more significantly. The performance of the real and
mixed models was comparable. Despite only being trained on 350 ex-

amples of real fish (and 350 synthetic images) the mixed model’s perfor-
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mance, measured by its F1 score, was marginally (3.2¢”*) above that of
the model that was trained on 700 real images. Its predicted masks com-
pared to those drawn by human annotators for the holdout set also out-
performed the model trained on 2020 real images, achieving a lower loss
and higher IOU and F1 score.

—Synthetic Real Mixed

Loss on Validation Set

Epoch

Figure 6.6: Comparison of model loss on the validation set at the end of

each epoch

Contours used for deriving lengths were not evaluated by the EBM,
as rough inferences by the model trained only on synthetic images meant
that some individuals would be double counted. This was due to a large
number of successive frames with contours that failed the EBM between
observations of quality contours. The circle deviation range for quality
contours was instead used, only contours that passed the check were used

in our calculation of the median length. However, This meant that false
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Table 6.4: Compares the predicted lengths generated by each model
through the process described in section 6.4 to the true lengths measured
on site in the third factory visit.

Predicted vs True Length Comparison
Model Metric

Mean Absolute | Absolute | Std Dev | R?

(mm) Mean median

(mm) (mm)

Synthetic || 16.937 39.08 21.600 59.1402 | 0.5947
Real -14.494 15.09 14.32 11.794 0.9423
Mixed -22.108 | 23.39 22.885 15.898 | 0.9018
All Real -11.832 | 13.10 11.265 12.573 | 0.9508
All Mixed | -10.280 | 11.25 9.9 10.533 | 0.9562

Table 6.5: Caption

positive predictions were more likely to affect the predicted lengths.

The image data used for deriving the lengths of these fish consisted of
56,187 frames taken from 128 fish, a single length is predicted per fish. The
mean, absolute mean and median, and standard deviation were calculated
from the predicted — true lengths and the result is shown under the respec-
tive columns in Table 6.4. The R? for a linear regression of each model’s
predicted length against the true length is also shown.

The model trained on synthetic imagery had a significantly larger stan-
dard deviation than the other two models that were trained on 700 images,
with an average absolute difference between predicted and true lengths of
39.08 millimeters. The synthetic model was the only model to have a mean
over-prediction. This was identified to be a result of false positive infer-
ences skewing estimated lengths.

The model trained entirely on real images achieved the lowest absolute

mean difference of the three models used for comparison. On average
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the predicted lengths were 15 millimeters below the measured lengths. It
also achieved the lowest standard deviation and highest R?, suggesting
that length estimates derived from this model’s predictions best represent
the true measured lengths despite the mixed model outperforming it in
metrics from the holdout set.

The model trained on all available data (2020 real images and 700 syn-
thetic images) outperformed the model trained on 2020 real images. This
improvement was consistent, not only on the holdout image masks but
also for the predicted lengths as shown in Table 6.4. The absolute mean of
the difference in predicted lengths by the model trained on only real im-
ages was 1.85 millimeters higher than the model trained on all data. The
difference between the results found from these two models and those
trained on a total of 700 images suggests that synthetic data does bring
benefits with regard to training DCNNSs. These results are particularly ev-
ident in the first test which compared the loss, IOU and F1 scores of all the
models on a holdout set.

6.5.3 Final Length Estimation

Some margin of error exists between the predicted and true lengths, in
tests of imagery from both the second and third factory visits the length
prediction process consistently underpredicts the length of the target fish.
Though tests that applied a birds-eye transform to the images appeared to
rectify this to some extent any transformation to the image that alters the
proportion of the calibration pattern differently to the fish will reduce the
accuracy of the predicted length.

A test on inferred lengths from two different images of the same fish
using the same segmentation mask showed how reducing the size of the
image can alter the final predicted length. In this test all single images
of the fish measured in the second factory visit were inferred on, generat-

ing 101 masks. These masks were then used to output a length per image
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Figure 6.7: True lengths compared to adjusted predicted lengths.

using both the image that had been passed through the data loader for in-
ference and then the original image that had not been altered. The average
absolute difference in predicted lengths for images which had been passed
through the data loader was 18.82 millimeters while the difference for the
raw images was 18.114 millimeters. Though on average this change is less
than a millimeter any inaccuracies in the projected size may have detri-
mental effects on the predicted lengths.

To correct for unknown error that may affect the predicted lengths a lin-
ear regression for the predicted lengths for the second visit was conducted
providing us with a linear transformation for future predicted lengths to
be adjusted. The average absolute difference between adjusted predicted
and true lengths, for recorded fish from the third visit, after this adjust-

ment was 7.523 millimeters. A single adjusted length was calculated as:

L; = P, % 0.9196 + 45.593 (6.6)
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Equation 6.6: Linear adjustment for predicted values. Where L is the
adjusted length for fish i and P is the predicted length for an individual
derived from a video. The adjusted lengths are recorded for each fish and
compared to the true lengths in Figure 6.7.

6.6 Chapter Summary

In this chapter, we explained how the moments of contours are calculated
and used to target the contour that was likely to be a fish that was closest
to the centre of the image. A minimum enclosing circle of this fish contour
was used to extract a single pixel length for the fish in the current image.
We then described how a scale factor, that is calculated from the calibration
pattern, is used to translate this pixel length into millimeters.

Our approach for a human supervised approach to manually extract
tish lengths from images was explained. The first approach used a Mat-
lab application to draw a single line over an object of known length (the
checkerboard pattern) to estimate the length of other objects in the scene.
The second approach used an edge detector and some manual removal of
unwanted edges, such as those of the ruler, to estimate the lengths of the
fish in each image. Both approaches achieved similar results. However,
the approach that used contours was far faster at extracting the lengths of
tish.

We also described, in detail, an approach to extract accurate lengths
from multiple image frames of fish. This used the median of all large
lengths to calculate the length for each observed fish. By allowing the
resetting of the stored lengths for each individual we were able to remove
lengths from partially visible fish from affecting our length prediction.

Lengths predicted from videos, similarly to those calculated through

the human-based approaches, were consistently under predicting the true
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length of the fish. A simple linear regression was calculated on predicted
lengths from the second factory visit against the true lengths from this
visit. The equation of the linear regression was used to adjust the predicted
lengths from the third visit. These adjusted lengths were compared to
the true lengths measured for the third visit and were on average 7.523
millimeters away from the true lengths, achieving our goal of achieving

predicted lengths within 1 centimetre of the measured lengths.
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Chapter 7
Conclusions and Future Work

In this chapter, we present the contributions and a summary of the key
findings from the work that was conducted as part of this thesis. Each of
the main components of this work is summarised following an overview
of the core objectives. Finally, we conclude with a discussion of future

research.

7.1 Conclusions

The overall goal of this thesis was to provide a method for accurately mea-
suring the lengths of fish from video footage and provide estimates for
both the count and length of these fish. In our pursuit to achieve this goal
the use of synthetic imagery to assist in training DCNNs was also explored
as image data for the fishing industry can often be difficult to acquire as
due to privacy concerns. Interpretable methods for evaluating inference
results were also investigated and provided us with a method of reducing
unfavourable inferences that may otherwise skew our predicted lengths.
Strict restrictions on reported lengths for undersized catch meant that
a key objective of this research was to achieve centimetre accurate length
predictions. We were able to achieve this goal on a holdout set of 128 im-
ages with an average absolute difference between predicted and measured

115
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lengths of 7.523 millimetres.

Concluding that models trained on both real and synthetic imagery
will outperform those trained on just real imagery cannot be made from
this research alone as there are too many external influences that may af-
fect these results. The randomly chosen images for training each model,
for example, may have been better suited for explaining the holdout set
in the mixed model than those in the model trained on 700 real images.
However, the results from this research are similar to those from other
works exploring the use of synthetic imagery [74]. Suggesting that syn-
thetic imagery for training deep convolutional neural networks performs

best when used in conjunction with real images.

7.1.1 Interpretable Methods for Evaluating Contours

For accurate length estimation, the use of all contours extracted from raw
inferences results in distorted length measurements, poor inferences or
false positives can lead to a predicted length unrepresentative of the true
length for the current fish. We investigated the use of interpretable meth-
ods for explaining features of contours that are useful in determining their
quality. These interpretable techniques allowed us to create a process that
leverages the power of machine learning to find patterns in our data while
also providing inferences that are justifiable.

Various shape features were calculated from the contours extracted
from segmentation inferences. These shape features allowed us to extract
key geometric properties of high and low-quality inferences which were
used to train an explainable boosting classifier. The use of an explainable
model not only allowed us to quickly classify the contours of new infer-
ences but also signalled value ranges for the calculated shape features that
were commonly associated with high or low-quality contours. These were
presented in the form of shape functions.

The shape functions calculated from these features when training the
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‘glassbox” model were visualised by plotting the calculated shape feature
against a contribution score, this explained the extent to which feature val-
ues were associated with the positive or negative class. Shape feature val-
ues within the range associated with a high-quality contour that did not
pass through the EBC successfully were flagged as potential poor infer-
ences. This approach allowed us to target our training on hard-to-classify
images, maximising the information gained at each stage of training. Ex-
tra care was also given to false negative predictions, negative predictions
were subject to thorough analysis to ensure that we did not only reinforce
the model’s bias.

Shape features were also used to restrict the inferences that contributed
to the final length measurement for each individual by only using contours
that had a circle deviation between 0.2 and 0.4. All other contours that did
not meet this requirement did not have their pixel length calculated.

Interpretable techniques are able to provide a method for evaluating
contours that is accountable. If useful contours are excluded from the
length estimation of an individual, the features that contributed to this
decision can be plotted and the cause of the issue may be understood. As
penalties may be incurred for keeping undersized fish, a fish that does not
pass the contour evaluation that is below 25cm would cause distrust in
this automated approach. By having an explainable model we are able to

understand why this occurred and may better implement a resolution.

7.1.2 Application of Synthetic Imagery

In line with data-driven machine learning the use of synthetic imagery
in training a segmentation model was explored. A Stylegans model was
used to generate synthetic images of fish. 700 of these synthetic images
were annotated and were used to train segmentation models.

Results for models trained on entirely synthetic imagery were promis-

ing, achieving an IOU of over 92% on the holdout set of annotated images.
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The inferences created by the synthetic model for predicting the lengths of
individuals from video footage were relatively poor compared to models
trained on entirely real data. Though the fairness of such a test is debat-
able, as synthetic images were limited to a size of 320 x 320 and therefore
lacked the large amount of negative training available in real images, from
areas where no fish were present. This resulted in skewed lengths from
false positive inferences, our approach of using the median to combat the
effects of outliers was not sufficient to produce reliable length estimates
for these instances.

The performance of models trained on a combination of both real and
synthetic imagery was similar to that of a model trained on the same quan-
tity of only real data. These observations are in line with similar research
and suggest that synthetic imagery may be used to assist in the devel-
opment of data in fields or edge cases where there exists a shortage of
data. However, the practical implementation of synthetic datasets requires
a thorough understanding of their potential limitations. One such limita-
tion was encountered in our tests in which lengths were predicted from
inferred segmentation masks, models trained on synthetic data were not
trained on enough data for negative classes, resulting in an over-prediction
of the positive class.

The use of synthetic imagery to bolster small datasets, particularly for
providing greater samples of uncommon instances, has great potential.
Advancements in neural network architecture and the handling of data
used in training [42] has significantly reduced the barriers that had limited

the development and implementation of synthetic imagery.

7.1.3 Length Estimation

This research was successful in developing an automated system to esti-
mate the length of partitioned objects from an image. This was achieved
by using a segmentation model to infer which pixels in the image repre-
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sent the target. Contours of the segmented objects were retrieved, by using
a minimum enclosing circle of the detected contour a pixel length for our
target was derived.

The use of a checkerboard pattern as a fiducial marker allowed us to
calculate the scale factor to express pixel lengths in millimeters. This was
done by retrieving the pixel length for each side of the pattern, by calcu-
lating the distance of the extreme key points and comparing this to the
known distance in millimeters based on the number of checkerboard tiles
identified.

We explored various factors that may hinder the production of accu-
rate length estimates, such as the angle and distance of the camera relative
to the pattern. This showed that orientation on the Y and X axes as well
as distance on the Z axis is particularly significant in determining the ac-
curacy of our inferred lengths. The use of a handheld camera was useful
for collecting a large variety of data. However to produce accurate length

estimations a fixed camera placed directly above the area of interest is best.

Effective use of this marker was sensitive to any changes that may re-
duce its projected size in the image relative to the object being measured.
As such, the original image or the earliest possible version should be used
to extract the pixel to millimeter ratio. Where no pattern was visible the
average ratio for the video was used, avoiding zero predictions for images

in which the pattern was obscured.

A system for deriving lengths from partitioned fish in a video was de-
veloped, by using the median length derived from a range of the largest
segmentation masks that were consistently of a similar size we were able
to significantly reduce the effect of outliers on our predicted lengths. Us-
ing this process we were able to achieve an absolute mean difference be-

tween predicted and true lengths of under 1 centimetre.
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7.2 Future Work

Before this system may be placed on a vessel a significant amount of train-
ing data should be added. The diversity of images in this research, though
gathered in different ways, is not enough to guarantee that these results
will be replicated in a less forgiving environment. We hope to use the
lessons provided by this research to set a strong foundation upon which

future iterations may be built upon.

Including multiple segmentation classes will also be explored, allow-
ing us to identify species as well as length. Enabling all personnel in-
volved to have close to real-time information about the length and count
for individual species would provide incredible value and allow for more

informed decisions to be made while fishing vessels are still out at sea.

Future work will also explore the use of instance segmentation for
counting individuals and storing information about recently seen fish that
may have left and re-entered the scene. The current approach for counting
and measuring has no resilience against fish that are not manually par-
titioned. Fish that are close to one another in an image would share the
same contour and result in a single length estimation which may be un-

representative of the length of either individual.

The use of synthetic data for the entire region of interest would pro-
vide a better understanding of the use of synthetic imagery in replacing
real images. However, we recognise that access to the compute required to
generate high-resolution synthetic images is not always readily available.
Despite recent innovations in generative adversarial networks meaning
far less imagery is required for training There are still some barriers to its
practical application in some industries. In recent research by NVIDIA,
DatasetGANSs [86] was developed, this procedure not only produces syn-
thetic images but also the relevant multi-class masks with minimal human
effort. The use of such a model would significantly reduce the burden of

annotating synthetic images and potentially allow for a far greater quan-
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tity of data to be used in training the segmentation model.

Automating the extraction of the region of interest is another area in
which we would like to conduct further research. The use of a calibration
pattern under the area in which fish are measured or ground control points
that are easily identified such as bright green would facilitate creating an
automated approach to narrow down the area in which the desired fish are
to be measured. The use of bright green gloves for handling the fish in the
second and third factory visits showed the benefits of using contrasting
colours as false positives over hands dropped almost entirely.
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Appendix A

File Structures for Fish Images

The directory structure is shown below.

Factory Visit_ 3
LBucket4
tarakihi_10001_416

tarakihi_10002_305

tarakihi_ 10003.483
t1651781700framelOO7994.jpg

Fig A shows the structure of the directories for storing our images.
These are described in descending order as; the folder for the visit number,
directories for each bucket of fish, directories for each individual fish, all
the relevant images for this fish.
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