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Abstract

Passengers utilising the transport network run by Metlink are unable to know
how full a vehicle is. Metlink is unable to provide the occupancy data in real-
time due to limitations for when the data gets uploaded. This project developed
a system that takes historical data and processes it so it can be used to make a
prediction. The system takes the average occupancy based on properties that
contribute to the occupancy trend such as COVID level and day. This is impor-
tant information to know for passengers so they can safely socially distance for
the respected COVID level.
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Chapter 1

Introduction

Metlink is responsible for running the public transport network across the Greater Welling-
ton Region. This network incorporates Buses, Ferries and Trains to get their passengers from
point A to point B. Passengers can plan and track their journey on the Metlink website, app
and display boards. Delays, cancellations and vehicle positions are available in real-time to
the passenger to estimate when the bus will arrive at their location.

This project aims to present another factor that passengers can gain extra insight into
their journey. There is no way for a passenger to know if they will get onto a vehicle that
is empty, a few seats left, standing room only or if they have to wait for the next service
due to no room at all. A popular request Metlink has been receiving is that they would like
to know if there will be enough space on the vehicle they intend to board, this request has
grown in popularity due to the need to know if passengers can safely socially distance due
to COVID.

1.1 Problem

Real-time data is not available, instead, the use of historical data provided by Metlink is
needed to predict the occupancy of a vehicle. The past six months of transport data entry
is available and can be accessed to assist in making an informed prediction. Included in the
data is the value of how many passengers got in and out at a particular station at a particular
time. This data is only uploaded when a train arrives at the Wellington Station and connects
to an internet connection which can sometimes be the following morning.

When making an informed prediction, the program needs to factor in public holidays,
weather and past data trends. Another factor to consider is this data does include occupancy
values during each COVID level; therefore, a group of data may be treated as outlying data
as it is a lot different when comparing various months.

1.1.1 Data

There are two file types that are provided by Metlink that are relevant to this project: APC
(Automatic Passenger Counting) and Consist files. The APC is responsible for storing de-
tailed information regarding when, where and the number of people going in and out of
each door. There is a data entry for each door, the trains that run on the Metlink network all
have eight doors, therefore there are eight data entries each holding the number of people
going in and out of that door. The consists file contains information that states the journey
and what units the train consists of. A train unit represents two carriages with a total num-
ber of 8 doors, each door has a data row in the APC files that has a property “Train_number”
that can be used to relate to the Consists file that has the property “Unit Id”. These files are



stored for every train journey represented in an excel file, at the end of each day the excel
files are compiled into a zip folder where they are kept for 6 months on the Metlink server.
The format of the data is explained further in Chapter 2.

1.1.2 Occupancy values

In this data format, the occupancy value is not related to any other entry other than the eight
doors at that time and station. The occupancy value is calculated using the total number of
people going in minus the total number of people going out at that station. The problem
is that there is no data value of how many people are currently on the train. Because the
system needs to predict how full at train will be at a station, this value is required.

The total occupancy value can be calculated by iterating through each train stop along
the journey and update the value accordingly. The process to obtain the current occupancy
at each station is:

¢ Assign each APC unit (Combine the eight doors together) to a journey by matching
with Consists files.

¢ Iterate through the units journey stops and calculate the total occupancy by adding
total in and subtracting total out.

¢ At the end of the journey, total in should be ignored and should expect the result of
subtracting total in to be zero.

¢ At the beginning of the next journey, total in is assigned to be the starting total occu-
pancy.

Throughout this project, this process is where the most time and effort has gone into.
The lack of any documentation for the data made it very difficult to understand how and
when the data is inserted and what the data represents. Multiple conversations with GWRC
(Greater Wellington Regional Council) and multiple testing approaches were developed to
form a greater understanding.

As seen in Figure 1.1.2, displaying all data entries for a journey going from Johnsonville
to Wellington, there are inaccurate values present. If the previous occupancy is wrong it will
have a cumulative effect where the error is carried over for all the following occupancy val-
ues, that is why we see a lot of negative values. Therefore, it is important to make sure that
the occupancy values are calculated correctly, otherwise, if the data being used to predict is
wrong, it will result in inaccurate predictions.
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Figure 1.1: Single journey occupancy example



1.2 Requirements

The following requirements have been analysed and evaluated based on the project brief
and the available data:

R1 The system needs to produce a prediction file regarding the occupancy values for every
Train journey based on the network’s timetable.

R2 The system must preprocess the data to have a data object that represents a train with
its total occupancy when it arrives/leaves the station.

R3 The system needs to output the predictions to be parsed and displayed on both the
Metlink website and the display boards at each station.

R4 The system must have an easy architecture for additional features to be included that
could affect the occupancy prediction.

R5 The system must automate the process to import the latest data and features used to
make new predictions.

1.3 Contributions

Throughout the period of this project the following contributions have been made:

C1 The design and implementation of a system to calculate and generate a list of predictions
regarding the occupancy values of a trains journey.

C2 The design and implementation of a process to parse and format data into data objects
representing a train vehicle and it’s total occupancy for each stop along it’s journeys.

C3 A quantitative and qualitative evaluation of the performance of the predictions calcu-
lated.

C4 A proof of concept of a system that demonstrates the operation of this design.



Chapter 2

Background and Related Work

After researching and reading about different projects in this area, there is not a project that
has the same data access and the same aim as this project. It appears that most train net-
works provide this data in real-time based on the data calculated from the sensors, so there
is no need for a prediction model [1]. The train vehicles that run throughout Metlink’s net-
work are unable to provide real-time occupancy data due to the only way to upload data to
the servers is to connect to the access point at the Wellington station. Every train would have
to have a wireless access point to upload the occupancy data when the passenger counting
sensors have new data, this project is created to avoid the cost of installing multiple access
points.

In some countries, passenger counting sensors are not found in the transport network,
so projects have been developed to create crowd-sourced data [4]. The crowd-sourced data
is used in the prediction model to attempt to deliver the passengers information about the
vehicle. But if there isn’t enough data then the predictions are not reliable [4]. Prediction
models have many real-world applications. Some of these applications present similar as-
pects to the predictions planned to be made in this project.

2.1 Occupancy Prediction Models for Transport

There are existing applications using machine learning algorithms to predict occupancy val-
ues for transport methods. An interesting project named the iRail project in Belgium aims
to predict Train occupancy values based on crowd-sourced data [4]. There is no official oc-
cupancy data available for the Belgium train network, so a crowd-sourced dataset is used
to train the model. This is an exciting idea as it results in a possible real-time solution to
the problem if the passengers classify the occupancy while they are travelling. For crowd-
sourced data to prove to be successful, it needs a lot of backing and adoption from users.
This has not happened. The predictions being made are not possible due to the lack of data.

Many projects talk about the different techniques used to solve prediction problems. A
study presents a new method based on Deep Learning with Recurrent Neural Networks to
predict the occupancy of a car park [2]. This project focuses on the use of Deep Learning
using the Birmingham Car Park Occupancy dataset that is updated every 30 minutes to
benchmark the performance of different RNN algorithms and configurations. The idea of
improving predictions for real situations by updating the model periodically with updated
data so the model can adjust.

As pointed out in the iRail project, a limited amount of data is good at predicting trains
with a low occupancy which is outside peak times, so it is easy to predict [4]. The dataset
used to train and the reliability is essential.



2.2 ML Approaches for Time Series

For this project, the historical data being processed is time-series data. Therefore, I con-
cluded that it was worth exploring articles about making predictions with different ap-
proaches for time series data [9].

There are multiple different techniques and methods to approach forecasting time series
data, such as Symbolic Regression, Linear Regression and Feed-Forward Neural Networks.
These can all be valid approaches that make accurate predictions and some can even be
combined to improve results. After researching, I concluded there is no right algorithm that
will fit the project. I will have to experiment and evaluate different techniques. For this
project, we need a method that can be expanded to factor in multiple parameters such as
weather and also be able to improve after new data has been imported.

In an article [9], I found that experiments with time-series data in depth. They focused
on combining ML techniques with framing data by windows. This is to achieve an accurate
prediction. It reshapes the information to frame a given point and will check the previous
values within the window.

2.3 Metlink Train data format

The data format for the two file types that Metlink create is presented by the two tables:
Table 2.3 and Table 2.3. The APC data format (Table 2.3) contains information that repre-
sents the data of the measured sensor for each door, the door number is defined by the
“door_ number” property where the value ranges from zero to seven, specifying each door
within the train unit. A new entry is created for every door when they are closed, the entry
created contains information from the period of when the door opens until it is shut. Each
door measures the number of people in and out and are assigned to the respected property
for the defined door number, all other property key share the same values between the doors
as they are part of the same unit. Total.in and total_out values represents the value of the
combined doors, the occupancy value represents the total_in minus the total_out.

The consists data format (Table 2.3) contains the information that represents what units
the train consists of. Each row defines a unit and the units journey, the journey id and final
destination properties are used to identify the trip and where the unit ends its journey. The
date properties: Dep Date, Actual Dep Date, Arr Date and Actual Arr Date are defined
to match with the APC file, for a Unit id that equals a Train_number has a start_date_time
between the consists Dep date and Arr date.



Key Description Value example
id Identifier for unit data entry | 1051874873
train number Unit id number 4374
entry_number Data entry count 1
start_date_time Date unit arrives 202109212327
end_date_time Date unit departs 202109212332
dwell Time train dwells at station | 300

type Type of stop Station
namel Station name Raroa

name?2 Station secondary name

door_release_codes 1

total_in People in across all doors 11

total_out People out across all doors | 3

occupancy total_in minus total_out 9
door_number Door number (0-7) 0

people_in People in for door 2

people_out People out for door 0
door_statuses 7

Table 2.1: Train APC Data format

Key Description Value example
Train Id Service number 6364

Train Date Date 20210821
Unit Id Front half of Unit FP4374

Unit Selcall “1” + Front half of Unit Num | 14374

Trail Unit Id Back half of Unit FT4374

Trail Unit Selcall “2” + Back half of Unit num | 24374

Seq Unit sequence num in Train | 0

Manual Linked Vehicle | Driving car

Journey Id Identifier for Journey 379210

Final Dest Going to location WIKNE

Dep Date Time expected to depart 202109212314
Actual Dep Date Time departed from station | 202109212314
Arr Date Time expected to arrive 202109220014
Actual Arr Date Time arrived at terminal 202109220017
Status CMP

No Vehicles 0

Table 2.2: Train Consists Data format




Chapter 3

Design

This section discusses the design of the deliverable system that will automate the data input
and produce an output consisting of train occupancy prediction values.

3.1 Database

The data is found as a zip folder for each day containing multiple excel files, some consisting
of more than 900,000 rows. Each row represents a train door and how many people went in
and out of it. The total number of data entries after removing duplicates is more than eight
million for a six month period, therefore it is best to process and import every data row into
a database. Without a database, the system will need to make multiple different queries;
due to a large amount of data, the system can’t unzip the files and just store them in RAM,
by adding them to a database, the data can be easily accessed, managed and updated.

3.1.1 Database model

The data format is unique so an existing model could not be reused to fit this project, there-
fore a custom model had to be designed. I have declared and designed four models for the
system that is responsible for storing the data to allow for easy management and accessibil-
ity.

The first model (Figure 3.1.1(A)), which is responsible for storing all the APC data. Every
property column found in the excel file format is present in the model with two additional
properties: zip_file name and date_created. These two are added to avoid reimporting the
same data, the import script should check if the zip file has been imported previously, if it
has it should check if the date of the zip folder has been modified since it has been previ-
ously imported. The next model (Figure 3.1.1(B)) is similar but has a few modifications in
comparison to the excel file format. In addition to zip_file name and date_created properties
being appended to the model, the is also unit_ids and train_.numbers. A train consists file
can contain multiple rows, with each row storing each unit that is part of the same train with
the same journey. The array contains each unit identifier within the train.

The remaining two models (Figure 3.1.1(C) & (D)) defined are designed to relate the
two data format models together, the “Station” model (Figure 3.1.1(C)) is designed to relate
an APC unit to a journey and assign the total_occupancy based on the previous occupancy
value within the journey. Then the “JourneyTrain” model (Figure 3.1.1(D)) is created to com-
bine Station objects that are units part of the same train along the journey. The JourneyTrain
model has the properties of prev_occupancy and occupancy, where occupancy is the total oc-
cupancy of all the units that consist in the train and prev_occupancy is the total occupancy



Train TrainConsists Station JourneyTrain
id: Number train_id: String id: String station: String
train_number: Number train_date: Date unit num: Number arr_date: Date
entry_number: Number unit_ids: [String] name: String dep_date: Date
start_date_time: Date train_numbers: [String] arr_date: Date prev_occupancy:
end_date_time: Date seq: Number dep_date: Date Number
dwell: Number linked_vehicles: String occupancy: Number occupancy: Number
type: String journey_id: String total in: Number unit_nums: [String]
name1: String final_dest: String total out: Number journey_id: String
namez2: String dep_date_time: Date tota|:occupancy:
door_release_code: actual_dep_date_time: Number
Number Date journey: {
total_in: Number arr_date_time: Date id: Number
total_out: Number actual_arr_date_time: final_dest: String
occupancy: Number Date act_arr_date: Date
door_number: Number status: String act_dep_date: Date
people_in: Number zip_file_name: String arr_date: Date
people_out: Number date_created: Date dep_date: Date
door_statuses: Number }
zip_file_name: String
date_created: Date

(A) (B) (C) (D)

Figure 3.1: Datebase models diagram

of the train at the previous station.

It was important to provide and store as many data features that may be relevant for
calculating and displaying a prediction. When designing this database model the main idea
kept in mind is what properties would someone looking at the prediction want to see. A
key idea is that this system should be a white box and therefore needs to display all the data
that is used to make a prediction to backtrace exactly how the prediction was made.

3.2 Program Structure

The requirement of R4 states that the program needs to have the ability to add extra features
for future improvement therefore the structure of a program needs to be designed in a way
that the system can be easily understood and extended. Adding features like weather and
sports events to help the prediction is an aim for the future of this system. The program
is designed to follow the functional programming paradigm. Functional programming is
achieved when the program consists entirely of functions, a function receives input and
delivers an output and no global variable will change [6]. The main benefit of the design of
a function having no effect other than to compute its results is its modularity [6]. It makes it
very easy to develop a small module and insert it anywhere within the structure, a module
can be reused in multiple places and can be separated out and tested independently [6].

For this project, there are many stages and complex calculations that can make debug-
ging a difficult process. Because the system is modularly designed, each function can be
separated out and tested independently, this makes debugging much easier. By separating
the program into parts and having them all come together to form the final result allows the
addition of new modules and provides the ability to test every individual part before it is
attached [6].

This design makes use of small functions/modules to be reused in multiple aspects of



the program. The figure below presents each file of the program and how each function
works with surrounding functions, there are multiple “helper” files that contain small func-
tions that are reused to compute results needed for multiple modules. For example, the
importHelper,js file contains two functions: importData() and zipImport(), these are used
for both importing APC files and Consists files. The design of this is to make the import
stage generic, that is why two different data formats can use the same function. Therefore it
should be easy to implement another data format into the system using the same function.

3.3 Pre-processing

This section discusses the process flow of the pre-processing stage within the system. To
calculate a prediction that is based on the historical data, the data needs to be pre-processed
to ensure that the values are correct and relevant. The diagram below presents the pre-
processing process flow, this stage has been designed to package the data into a new format
that is used to predict future occupancy values (Figure 3.3).

The design can be described as a pipeline made up of stages, the first stage is to import
the excel file and insert them in the database, the next is to take the documents from the
database and assign the calculated current occupancy value of the unit throughout the jour-
ney. After the occupancy values are calculated they are parsed as a Station model object and
inserted into the database where they are used to create a complete train based on the con-
nected units and formatted as a JourneyTrain model object and inserted into the database.
These JourneyTrain objects are created to make it easy to assign flags and features based on
the dates e.g. lockdown periods. Once the flags are assigned to the corresponding objects,
all the data is exported to a JSON file. The final format has the property keys: station, occu-
pancy, secondsSinceMidnight, weekday, weekend, date and COVID_LVL. These properties
can all be derived from the imported data apart from COVID level. This prediction feature
can be obtained from the government website that presents the history timeline of the alert
level periods [5].

To satisfy the requirement to have the ability to add extra features for future improve-
ment (R4), the design has the key idea to be modular and easily extended. Extra features
can be added in the future to provide further insight into the occupancy predictions. The
pipeline design also provides the flexibility to insert a new stage anywhere along the pro-
cess.
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Chapter 4

Implementation

4.1 Technology

The technology choices have all been made after researching, examining and experiment-
ing, all choices have been made to best suit the system for the specified project. The main
technology aspects that needed a decision were which database framework, programming
language and prediction model.

4.1.1 Database selection

For selecting which database technology is most suitable for this project, it was between
two categories: relational and NoSQL databases. An example of each type of database that
I considered is MySQL for relational and the NoSQL database, MongoDB.

The concept of SQL relational databases is based around the idea of related data tables,
while NoSQL is not modelled by relational tables but rather stores data in the database via
documents. This is the key difference between the two, the use of a NoSQL database will
result in the best performance for big data and a SQL database has the best performance
when data needs to relate over different tables [7]. Another feature that NoSQL provides is
the ability to have a dynamic schema, therefore attribute names can be dynamically defined
at runtime for each document [8].

For this projects use case, MongoDB has shown to be a great solution due to the fast set-
up and performance shown with big data. The aim of this project is to improve prediction
accuracy by validating the model with new data. The database’s size will keep increasing
over time and a NoSQL database can scale and store a large volume of data [7]. Although
there does require some relating of data between tables, which MySQL would outperform
NoSQL. I believe for the long term this NoSQL database will scale the best. The implemen-
tation of an SQL database will increase the speed of the processing of related tables, for this
project, reliability is more important than speed.

4.1.2 Programming language

The bulk of this project consists of data processing, some great candidates for selecting a
programming language are Java, R, Python and JavaScript. The requirements that have
been defined to be the best fit for this system are to first be great for data processing, work
well with MongoDB, have a rich library ecosystem and be straightforward to manage and
manipulate JSON documents.

To use MongoDB, most languages are supported, a datastore should be independent of
what programming language is chosen. However, MongoDB stores data as JSON docu-

12
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Figure 4.1: Database technologies comparisons

ments, therefore the ability and performance of serialising and deserialising JSON need to
be considered. JSON was born out of JavaScript, therefore it seems like the obvious choice to
manage and manipulate JSON documents [10]. JavaScript objects, values and array syntax
is similar to the JSON format, where it is easy to convert JSON data into JavaScript objects
[10].

Python and R are both the tool of choice for many data scientists, both have very active
communities that create tools crafted for data analysis and processing [3]. R has been created
and designed to the exact purpose of being used for data science and statistics, therefore this
language isn’t suitable for this project as the language needs to support multiple purposes
[3].

Below is a table where the language candidates have been ranked for each requirement
that is needed to support the project (Figure 4.1.2). The ranking decisions are made by
making conclusions based on reading papers and previous experience with the language.

JavaScript Java R Pythaon
poutvall : z 1
it B : ; :
Rentway | : ; z
JSON support 1 4 3 2

Figure 4.2: Programming languages comparison diagram

Choosing both JavaScript and Python as the programming languages allowed the flexi-
bility and power of Python with the access of great libraries such as Matplotlib and Pandas
while also having JavaScript to process and format the data from MongoDB.
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4.1.3 Prediction model

The implemented method that the system uses to calculate predictions is written in Python,
the process of this method is:

1. Taking arguments that specify station, COVID level, day and time.
Calculate if the day is a weekend or not.

Calculate the average occupancy of all the data that satisfy the argument values.

= LN

The average is calculated by first generating a query using the Python library Pandas,
which creates a group of data that equals the arguments. The query has the parameters
of: station, COVID_LVL, weekday, weekend, secondsSinceMidnight.

5. For the argument of time, this query is defined as ((time - 500) < secondsSinceMid-
night < (time + 500)). The times in the dataset are when the train arrives at the station,
therefore the vehicle isn’t always on the exact same time so a buffer of plus and minus
500 seconds is added on each side so the data entry is still obtained.

6. Once a Pandas dataframe (Group of data) is created, consisting of all data that satisfy
the argument values, the occupancy values for each entry is summed to a total value.

7. The summed occupancy total value is then divided by the total number in the dataframe.
This result is returned and assigned to the variable representing the average.

8. The next step in the process is to get the average occupancy for just the station and
COVID level argument values.

9. These two averages are added together with the weights by multiplying the first aver-
age value by 0.8 and multiplying the station, COVID average by 0.2.

10. The result of the added weighted averages represents the prediction.

This implementation can be improved to make better, more accurate predictions. The
averaging function is designed to take multiple property values that can be swapped in and
out to calculate the value that results in the best prediction. This implementation also can
weigh different averages, the current weights defined need more tweaking based on tests.

The prediction implementation method that has been defined demonstrates the core of
the system, the results that the system can produce are used to be the baseline for future
work to improve on.

4.2 Validation

This section of the report outlines the implementation of validating the data that is imported
and created. The purpose of data validation is to ensure the data is clean and reliable, this
project deals with over eight million entries of data, therefore it’s impossible to guarantee
that the data that has been imported is correct just by looking at it. Throughout the de-
velopment period of this project, this validation stage has been crucial for debugging. The
validation stages that have been implemented are for importing APC files and validating
that the correct journey id has been assigned to the Train object. These two aspects of the
system are where the most complexity is, that is why time was invested in developing a val-
idation system. The complexity makes it very difficult to debug and therefore it’s difficult
to really know if the data is correct without this validation system.

14



4.2.1 Train door sensors

When the calculated occupancy values were encountered to be negative, a hypothesis that
was explored was the possibility that the sensors on the train doors were faulting or installed
incorrectly. Multiple validation heuristics were developed to check for any unexpected be-
haviour of the data measured by the sensors located at each door throughout the train that
counts the number of people going in and out of the vehicle.

Heuristic 1

This heuristic aims to see if there are one or more sensors located on the doors of the train
carriage that have been installed incorrectly. If the sensor is installed incorrectly, the value
for people_out is actually the value for people_in therefore when the calculation subtracts
people_out, a negative value occurs.

1. Find a journey that results in a negative occupancy
2. Swap the first door data values, so people_in is the value of people_out

3. Recalculate the journey with the door sensor flipped to see if this change results in a
non-negative occupancy value

4. Repeat this process for every combination of door sensor swap

At the end of execution, the script displays every combination with the occupancy at
the end of the journey. Those combinations that result in a positive value are tested with
the same combination of flipped door sensors for the same unit on a different journey. The
test aims to see if this combination works for all journeys that this unit has gone on, if the
occupancy values are always positive with this combination the conclusion can be made
that the set of door sensors that have been switched have been installed incorrectly.

This conclusion was never made as no combination ever resulted in a positive value for
all journeys for any unit.

Heuristic 2

The next heuristic developed to test the door sensors involves getting a train unit at peak
time in the morning at the Wellington Station and display each door value. At peak time
there is an expectation that there are more people going out of the train compared to in. If
this is not the case and there is a door with a high number of people going in, next check
another day for the same unit and see if the same door has more people in than out at the
Wellington station. If this trend repeats for multiple days the conclusion can be made that
the sensor on the door is measuring the wrong way.

Heuristic 3

The last heuristic that was done consisted of printing out each doors occupancy value (peo-
ple_in minus people_out) for every stop along the unit’s journey. The printed format makes
it easy to see any invalid trends that occur throughout the trains journey. The main trend
that this heuristic looks for is a repeating door’s occupancy value of zero. This would indi-
cate that the sensor isn’t measuring at all and ignores every passenger walking in that door.
This pattern was observed multiple times but not constant for every journey that the unit
travelled. Therefore, this heuristic could not make a conclusion that the door sensors are
faulty.
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By executing these heuristics didn’t allow the conclusion of detecting that the sensors are
faulty. Therefore, they did prove that the sensor data is correct and the problem of the
occupancy values happens within the systems program. It was very important that the data
could be proven to be accurate as the process of calculating the occupancy values is very
complex and has many aspects that can result in negative values, it made it easy that the
data that is invalid can be ruled out.

The problem of calculating occupancy values is explored further in Chapter 5.

4.2.2 APC Data importing

The process of validating the APC data is the excel file directory path is passed as a param-
eter to the script that executes to check that each entry has been added to the database and
all the property values match. A great example to explain how effective this stage can be is
there was a problem occurring when calculating a prediction for a specified time. For a pre-
diction request at a peak time, it is expected to reflect an occupancy value at peak, but it did
not. There are multiple factors that can cause this to happen within the implemented sys-
tem. Only after backtracking in the code, the validation system started development used
first to validate the APC data, where it throws an error if the date property value is matched
incorrectly. The library that is used to parse the date strings added a timezone by default,
therefore all date times were 12 hours off. If the validation stage was implemented to ex-
ecute straight after it has been imported, the time spent debugging would’ve significantly
decreased.

4.2.3 Journey identifier matching

A lot of time was spent debugging the creation of Station objects, where units are assigned
a journey id and the occupancy is calculated. A problem arrived when relating units with
the same journey id into a JourneyTrain object where the total occupancy of the whole train
is summed. It is expected that all the units found in the consists file should have the same
journey id and combine to create the JourneyTrain object. The validation system developed
checks this and it showed that this was not the case, there were missing units that hadn’t
been assigned a journey id or assigned an incorrect id. This debugging process of tweaking
parameters of how a journey is assigned and then running the validation script allowed a
fast iteration process to know how the changes affected the result.
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Chapter 5

Evaluation

The evaluation of the prediction system for predicting occupancy values for the Metlink
Train network was done using performance as a metric. This section discusses methods to
measure performance and what good performance means in the context of this project.

5.1 Methods

Different methods have been used to measure how well the model performs, this perfor-
mance is measured by comparing the calculated prediction result with the expected value
fetched from the dataset.

Method 1

This first method is executed to visually see how the prediction system performs for a sin-
gle journey. The evaluation method utilises functions developed in the system designed
specifically for evaluation purposes.

The method executes by first taking a user input that defines the day, next the program
will run and calculate a prediction for every station within each journey that occurred on
the selected date. Data is removed for all entries greater than and equal to the selected date,
the remaining data is the training set used to calculate a prediction. The function will iterate
through each journey calculating each prediction for each station with each journey, at the
end of each iteration, a line graph will be presented. The graph shows visually how the
prediction compares to the actual value retrieved from the data. On the x-axis, each station
name is labelled and the occupancy values are increasing up the y-axis, there is a line for the
prediction and the actual values.

This method essentially simulates predicting the occupancy values for tomorrow. It pro-
vides an easy understanding of how the prediction model performs. The indication for the
best performance is when the two lines are overlapping.

Method 2

This method results in an actual numeric performance measure, the idea is to split the
dataset into a training and a test set. Then we use the training set to calculate a predic-
tion for every entry in the test set and validate if the prediction is correct using the actual
value.
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The first step for this method is to split the data, the size of the test set is defined as 10%
of the entire dataset, the data is first shuffled before the split using a random state value.
Each entry in the test set is parsed into the predict method where each property is used to
get the average based of the dataset of the training set. After each prediction is calculated
it is matched with a classifier, the classification is defined as 0 if the occupancy is less than
25 and 1 if less than 50, the classifier continues to increment by 25 until 150. The classified
prediction is matched with the classified actual value, if there is a difference of 1 or less, this
is considered as a correct prediction and adds one to the correct predictions variable. The
accuracy of the model is calculated by taking the correct predictions divided by the total.
This will produce a percentage value of how accurate the system is.

5.2 Results

The results using method 1 are displayed below for three different journeys randomly se-
lected.

Prediction vs Actual

—— Prediction
40 Actual

Ngauranga Petone Ava Woburn Waterloo Epuni Naenae Pomare  Silverstream  Heretaunga  Trentham  Upper Hutt Yard
ion

Figure 5.1: Prediction vs Actual for a journey from Wellington to Upper Hutt

Prediction vs Actual
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Wellington Petone Ava Woburn Waterloo Epuni Naenae Wingate Taita
Station

Figure 5.2: Prediction vs Actual for a journey from Wellington to Taita

The results using method 2 is displayed below in a line graph showing the accuracy
along the y-axis and across the x-axis is each random state value starting at 0 and increments
until 10.
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Prediction vs Actual
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Figure 5.3: Prediction vs Actual for a journey from Wellington to Waikanae
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Figure 5.4: Accuracy measurements for shuffled test sets

5.3 Discussion

The performance evaluation of the system has presented a great insight into how the pre-
dictions compare to the actual data. Based on the three graphs made by method 1, it has
shown that the predictions closely resemble the actual occupancy values. There are stations
that the difference between prediction and the actual value is further away. However, this
is only relative and the value seen in Figure 5.2 is only overestimating the value by 28. The
margin of error defined in the method is the classifier value can be plus or minus 1, and a
classification is done in an increment of 25. Therefore, this is an incorrect prediction based
on the requirements of the method but it is only overestimating by 3 people. To fix the over-
estimation, the system can be improved in multiple ways, but a key improvement could be
to add a new feature to the model that can be used with the calculation.

Method 2, provided a better measurement to present the accuracy of the system, in the
graph (Figure 5.3) the accuracy is presented for a range of different test sets. It shows that
the system is able to make a prediction that has an accuracy higher than 97% using 90%
of the shuffled dataset. Without shuffling the dataset, the evaluation could be invalid as it
could be based on an exact configuration, where for this project the dataset is changing so
would not be valid for this use case.

A key factor that can affect the validity of the evaluation methods outlined previously is
they are based around the idea that the data and the data processing is of quality. Because
the methods involve matching up with the processed data to validate that the prediction is
correct, this evaluation is not valid if the data is incorrect to begin with. To fix this, an eval-
uation method would be included to physically count the number of passengers entering
and exiting the train and to match that value with the prediction instead. This also has the
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assumption that the physical count is of quality and is accurate.

The figures created using method 1 shows that the actual occupancy values provided by
the dataset (Orange line) are close to zero throughout the journey. In some cases the occu-
pancy is less than zero, this is due to values not being included within the pre-processing
stage. In this stage there are rules that try and mitigate this error, however, this needs im-
proving. I think that the occupancy calculation process needs to be rewritten and validation
scripts need to be developed that execute throughout the process to ensure that the data is
correctly calculated.

When taking an average of all data for each COVID level it shows a clear relative differ-
ence between each level, however, the average occupancy of all stations for level 1 is only
a little higher than five (Figure 5.3). The value is expected to be higher, there is a possibil-
ity this problem is caused by the mitigation technique to remove negative values by setting
them to zero. Therefore the average calculation includes multiple zero values to lower the
average.

Average Occupancy for each COVID level

Average Occupancy

Level 1 Level 2 Level 3 Level 4
COVID Level

Figure 5.5: COVID levels occupancy average comparison

The prediction performance is measured in Figure 5.3 over a period of a week, this graph
is created using method 2 and adjusting it to calculate a prediction for every station stop
for every day. The performance ranges from 90% to 100%, this is within the area that is
expected to make reliable predictions. In Figure 5.3, the classification class distribution is
presented, as defined in method 2 the prediction is matched with a classifier. A classifier
value of 0 is assigned to an occupancy value less than 25, Figure 5.3 displays that the system
has an unbalanced class distribution, the classifier value of 0 is the result of the majority of
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calculated predictions. Figure 5.3 has been zoomed in to be able to see the other classification
values as they are really small in comparison to the classification of 0.

Therefore, the accuracy values presented in the results are unrealistic as the classification
of 0 outweighs the other classes. If a classification ML model was implemented to replace
the current prediction model, the algorithm will omit the smaller classes and will again
increase the accuracy performance unrealistically.

The evaluation methods presented are only valid if the data is accurate to begin with, the
results that the method produced gave great insight into the problems within the system.
After fixing and improving the system, these methods can be used again to evaluate the
improvements made to justify that the changes made have actually helped the predictions.

Prediction performance for each day over a week
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Figure 5.6: Accuracy performance for each day over a week period
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Figure 5.7: Class distribution for each day over a week period
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The aim of this project was to develop a system that can calculate predictions regarding the
occupancy count of a train that a passenger intends to get on. The majority of requirements
for this project have been accomplished, the remaining requirements will be expanded on
in future work. The system does not produce a prediction file containing the occupancy val-
ues (R1), this file will be used to meet R3 where the occupancy values will be displayed on
both the Metlink website and display boards. These requirements have not been met due to
the complexity of the pre-processing stage (R2), this requirement was achieved, the system
processes the data and creates data objects that represent a train with its total occupancy.
The total occupancy values that are calculated have been evaluated and are believed to be
incorrect, the limited time of the project has resulted in this stage being part of future work.
The architecture of the system allows for additional features to be used to calculate the pre-
diction (R4), this requirement not only allows for future improvement but helped a lot for
debugging purposes.

Requirement R5 has been met through the pipeline architecture design, the system can
run automatically to import the latest data and calculate predictions. This requirement is
very important for the systems use case as it should run without a person to manually exe-
cute it, the system needs to reliably run every day to calculate the predictions with the latest
data for future train journeys.

In summary, the contributions made throughout the period of this project are:

* The design and implementation of a system to calculate and generate a list of predic-
tions regarding the occupancy values of a trains journey.

¢ The design and implementation of a process to parse and format data into data objects
representing a train vehicle and it’s total occupancy for each stop along it’s journeys.

¢ A quantitative and qualitative evaluation of the performance of the predictions calcu-
lated.

¢ A proof of concept of a system that demonstrates the operation of this design.

6.2 Future work

The occupancy prediction system can be improved in many aspects, the first priority task is
to fix the calculation process of occupancy values. Another goal in the future is to automate
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tests on the system to validate that the predictions created are of value. Once the occupancy
values have been evaluated and have shown to be accurate the next goal is to integrate the
system with the Metlink website and display boards. Another improvement to the system
is to integrate different features into the prediction system, for example, weather and public
holidays, these features can have an impact on the occupancy of the vehicle and should be
part of the prediction to make it more accurate.

Future goals have been in discussion to use this system to integrate real-time data that
is in progress to being added to the vehicles in the future, this will result in more accurate
occupancy values for the vehicle that is approaching the station that the passenger is waiting
for. When the real-time data isn’t available the predicted value is presented instead, the real-
time data can also be used to update the prediction for the upcoming journeys. In case of an
event that the prediction didn’t take into account, the real-time data can assist the prediction
to make it up to date with the latest features known.
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