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Abstract

The analysis of remote-sensing data using machine learning and or deep
learning techniques is becoming popular. Accurate mapping and identification
of agricultural land use are essential to many agricultural applications such as
identification of irrigated land and identification of what crops are being grown
on a particular piece of land. Previously, implementations using remote sensing
and machine learning for the agricultural domain have been carried out. There
have been efforts to solve challenges in the agricultural domain such as iden-
tification of the quality of soil, seed quality and crop disease detection. This
research aims to utilise the considerable Sentinel 1 and Sentinel 2 dataset which
is open-sourced, there also exists an open-source dataset that provides demar-
cated irrigated land provided by the Ministry for the Environment (MFE). In
practice these datasets are created using a desktop-analysis method which is a
labour-intensive task. This research aims to identify irrigated land from Sentinel
imagery which could be used to deconstruct the patterns and effects of consump-
tion of water use by these landowners. Likewise, other useful statistics could
also be derived from such identification. This research aims at utilising machine
learning techniques to accurately identify irrigated land thus making the process
much more automated and less manual.
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Chapter 1

Introduction

Irrigation is an important part of agriculture, when irrigation occurs and how it changes
over time and is essential to understanding, managing resources and can aid in the deriva-
tion of other useful statistics such as water usage and soil salinity. Most large scale maps
of irrigation have been produced at low resolutions or rely on remote sensing data com-
bined with national statistics. The identification and mapping of irrigated land can be cum-
bersome and time-consuming when done manually using Geographic Information System
(GIS) software by experts. These maps can also be biased and not capture high resolution
trends due to labor-intensive collection of data. The low resolution of maps previously gen-
erated were developed on large scales due to the extensive resource requirements to process
satellite imagery. However, an increase in the availability of remote sensing imagery and im-
age classification methods present a cost-effective and accurate means to identify and map
irrigated land by automating the process. This research aims to identify irrigated land from
non-irrigated land using machine learning techniques such as classification from sentinel
imagery which has become a vital source of information in land resource management and
also has applications for agricultural land..

Classification can be defined as a systematic arrangement of data in groups or categories
according to an established criteria. A simple example could be categorizing hurricanes in
category one to category five based on a scale measuring the severity [1]. A supervised clas-
sification task such as image classification in the machine learning domain is concerned with
learning a function that maps an input to different classes or categories based on example
input and output pairs provided to the model during the training or learning phase based
on features of the input image. Image classification is an important task in the computer
vision domain.

There are various algorithms that can be used as classifier such as Random Forest [16],
Support Vector Machines [42], K-Nearest Neighbors and Multi-layer perceptrons [34]. These
algorithms provide us with different techniques for classifying pixel values from images
which can be extracted and assigned a class or label this is then used to train the model
to recognize patterns in the data which can be used to further make predictions on images
unseen by the model. Random forest is the most commonly selected algorithm of choice for
a classification task involving remote sensing and agricultural machine learning tasks such
as classification of irrigated land from non-irrigated land and soil evaluation [15, 33].

1.1 Motivation

Irrigated agriculture contributes to approximately 40% of the total food produced world-
wide, but accounts only for 20% of total cultivated land [2]. 85-90% of all freshwater that
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can be consumed globally is used by irrigation. The Food and Agriculture Organization
forecasts that by 2030 the world would have increased irrigated land by 34% [2]. Irriga-
tion is necessary for agriculture since it stimulates crop growth under unfavourable climatic
conditions. However, it also has an impact on the environment, such as draining wetlands,
changes in the quality of the soil, decreased streamflow, and in particular, water consump-
tion. A study conducted by AquaLinc in 2020 found that New Zealand has a total of 903,465
hectares of irrigated land out of this Canterbury had a total of 546,205 hectares of irrigated
land accounting for 64.05% of the total irrigated land area. Many studies for identification
of irrigated land has been carried out in the past in various countries, to the best knowledge
at the time of writing this thesis no such work exists for New Zealand except the desktop
analysis approach utilized by AquaLinc [18] which is a manual task, time consuming and is
carried approximately once every three years.

It is of utmost importance to not only evaluate soil when it comes to agriculture, but
evaluation of land is also necessary this helps in making decisions regarding land use de-
velopment. Benefits of land evaluation for irrigated agriculture is to predict future condi-
tions after development and to foresee benefits to the farmers and national economy and
whether these can be sustained without damage to the environment or the economy of the
nation. Although this research does not focus on land evaluation, identification of irrigated
and non-irrigated land could be considered the first step towards evaluation of land. An
automated process to identify irrigated or non-irrigated land from available sentinel im-
agery can help reduce the time required to map them using a desktop-analysis method or
surveys. According to a report by Stats NZ, there has been a 91% increase in irrigated agri-
cultural land in New Zealand between 2002 and 2019 [13]. If we do not track the growth of
irrigated land it could also be problematic to other resources such as water. An increase in
irrigated land means more water abstraction and increased pressure on river flows, fresh-
water habitats, mahinga kai(traditional value of food resources and their ecosystems), and
well-being of species such as tuna, kākahi (freshwater mussels), kōura (freshwater crayfish),
and ı̄nanga (whitebait). These are important species to the people of Aotearoa and valued
taonga (treasure).

A convolution neural network approach proposed by Colligan et al. [17] used an en-
semble of convolution neural networks which rely on reflectance information from Landsat
imagery to classify image pixels corresponding to irrigated land. This method does not de-
pend on exhaustive feature engineering or require high computational resources. Ambika
et al. [15] proposed utilizing Moderate Resolution Imaging Spectroradiometer (MODIS)
data for identification of irrigated land in India using a decision tree classification algorithm
where Normalized Difference Vegetation Index (NDVI) was used to identify a threshold for
individual class cluster.

Qi et al. [33] proposed utilizing a non-machine learning approach, where images from
summer and winter seasons are used. Along with these ground references from 139 coun-
tries were also used and applied masks to collected signatures which could be out of 3
threshold ranges and the ground truth were laid on these threshold levels and the method
with accurate pixels matching ground truth is utilized.

This research project aims at building a binary classifier for landcover classification to
identify irrigated from non-irrigated land which can be achieved by employing a machine
learning approach such as Random Forest and other algorithms to the sentinel 2 data. There
have been previous attempts to use random forest algorithm [25], but with different data
sources. This project proposes to narrow its focus to the Canterbury region of New Zealand
because of the highest percentage of irrigated land is in this region [18]. The different bands
in the Sentinel imagery and various indexes calculated based on these bands can further help
in identifying whether the target land plot has live vegetation or not. The contrast between
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Figure 1.1: Sentinel 2 imagery over Colorado.

irrigated and non-irrigated land in the NDVI and aerial imagery varies between regions.
The study conducted by AquaLinc[18], states that the Canterbury region has an extreme
contrast between irrigated and non-irrigated land and that this contrast is the highest in the
region of New Zealand. The imagery in Figure 1.1 illustrates how indicators such as NDVI
and NDWI can be used to classify irrigated land and non-irrigated land.

• Red – Barren earth / soil

• Green - Normalised Difference Vegetation Index

• Blue – Normalised Difference Water Index

1.2 Research Goals

The overall goal of this research is to utilise a machine learning approach that can aid and
automate the task of identification of irrigated land from sentinel imagery. This study is
carried out in the Canterbury region in New Zealand. This research will help to reduce
the labour-intensive task of identifying such land using the desktop analysis method and
will enable maps for irrigated and non irrigated land to be developed frequently with high
accuracy. Specifically, this study has the following objectives

• This study will investigate the performance of utilising multiple supervised machine
learning techniques to classify sentinel image pixels into irrigated and non-irrigated
lands.

• Comparing the performance of machine learning techniques to that of the desktop
analysis method.

• Understanding the number of samples required for training a model for the task at
hand.
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1.3 Major Contributions

This thesis will contribute to the research previously done for land use using machine learn-
ing techniques and artificial intelligence by:

• Showing how to design and build a supervised learning classifier that can classify irri-
gated land from non-irrigated land using sentinel-2 satellite imagery in New Zealand.

• Comparing and contrasting few classification algorithm that helps understand which
algorithm works best.

• This project is the only automated approach made open source specific for the country
of New Zealand aiding agriculture using machine learning.

1.4 Organization

The rest of the report is organized as follows. Chapter 2, gives a brief introduction to the
field of remote sensing and sentinel-2 imagery, machine learning techniques e.g., supervised
learning, unsupervised learning, semi-supervised learning and reinforcement learning, clas-
sification algorithms e.g., random forest, k-nearest neighbor and multi-layer perceptrons,
concepts of feature selection and finally concepts regarding hyperparameter tuning. The
benchmarks, datasets and baseline approaches are discussed in chapter 3. Chapter 4 ex-
plains in depth the experiment designs, results and result discussions are discussed. Finally
the conclusion along with future work is discussed in chapter 5.
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Chapter 2

Background

This chapter discusses and describes remote sensing, sentinel imagery and satellites, basic
machine learning terminologies and concepts, focusing on classification problem. The dif-
ferent algorithms explained in this sections are random forest, k-nearest neighbors, support
vector machine and multi-layer perceptrons. The multicolinearity problem along with its
solution for feature selection is also explained. Finally, a presentation of related work in
literature survey closes the discussion of the chapter.

2.1 Remote Sensing and Sentinel Imagery

Remote sensing is the process of acquiring information about the earth’s surface by measur-
ing its reflected and emitted radiation without coming directly in contact with the object.
The process of remote sensing involves interaction between incident radiation and target
of interest. Remote sensing includes various useful electromagnetic radiation such as visi-
ble light (VIS), near infra red (NIR), shortwave infrared (SWIR), thermal infrared (TIR) and
microwave bands. Remote sensing was first discovered in the 1800’s and in the last two
decades remote sensing techniques are applied to explore agriculture applications such as
crop discrimination, crop estimation, soil survey etc.

There are various satellites that collect remote sensing data of which some are freely
available and some are provided through commercial satellites. Some of the most widely
used satellite data are Sentinel-2, Sentinel-1, MODIS data and Landsat data. The data used
for this research is Sentinel-2 data which delivers high resolution optical imagery for land-
monitoring, emergency responses and security services with a common purpose for land-
cover and land-change detection maps, monitoring of vegetation and burned areas. There
are 13 spectral bands available: 4 visible bands (10m spatial resolution), 6 near infrared
(20m) and 3 shortwave infrared (60m). The Sentinel-2 data has 5 days revisit time. This
imagery is orthorectified, spatially co-registered data.

The process of a satellite hovering over an area and scanning the Earth surface is known
as a “datatake” which means the continuous acquisition of an image from one Sentinel-2
satellite in a given imaging mode. The maximum length of a datatake is 15,000 km. The
ground receiving station is incapable of receiving such a huge area and hence “datastrips”
are used which is within a given datatake, a portion of image is downlinked during a pass
to the station. The maximum length of a datastrip downlinked is 5000 km. When consid-
ering 25x23 km sub images these are referred as “granules” and 100x100km sub images are
referred as “tiles” as depicted in figure 2.1

The 13 bands of Sentinel-2 data is explained in the Table 2.1
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Figure 2.1: Representation of Tiles in Sentinel Imagery.

2.2 Machine Learning Techniques

Computers can be made to learn tasks and get better at it using machine learning which is
made up of statistics and computer science. The various algorithms that have been used
broadly and in different ways allow the computer to solve a variety of problems some of
which could be pre-defined.There are different techniques through which a machine can
learn such as supervised learning, unsupervised learning, semi-supervised learning and
reinforcement learning.

2.2.1 Supervised Learning

Supervised learning means having an expert judge whether we are able to find the correct
answer or not. Similarly, in machine learning supervised learning, means having a fully
labelled dataset while training an algorithm [24]. Fully labeled meaning that every example
in our training data has an answer attached to it from which the machine can learn. For
example, if we are trying to identify if a email is a spam or not, a labelled dataset of emails
will tell the model which email is a spam and which is not. Supervised learning techniques
is visually explained in Figure 2.2.

2.2.2 Unsupervised Learning

Getting access to labelled data or generating labelled data can be time consuming, labour
intensive and also expensive in most cases. The alternative to supervised learning is un-
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Table 2.1: This table shows 13 bands of sentinel 2 data
Band Name Description Band Number

AOT Aerosol Optical Thickness 1
B01 Coastal Aerosol 2
B02 Blue 3
B03 Green 4
B04 Red 5
B05 Red Edge 1 6
B06 Red Edge 2 7
B07 Red Edge 3 8
B08 Near Infrared 9
B09 Water Vapour 10
B11 Short Wave Infrared 1 11
B12 Short Wave Infrared 2 12
B8A Narrow Near Infrared 13

Figure 2.2: Supervised learning techniques example (classification).

supervised learning, where there are no labels or correct answers attached to the training
dataset [19]. A simple example could be clustering where points in the dataset are clustered
in different groups. The figure Figure 2.3 represents clustering of flowers based on petal
width and petal length.

Figure 2.3: Unsupervised learning techniques example (clustering).
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2.2.3 Semi-Supervised Learning

Semi-supervised learning is the combination of supervised learning and unsupervised
learning techniques. Semi-supervised techniques work with datasets that have both labelled
and unlabelled data [20]. Semi-supervised method is particularly useful when it is time in-
tensive to label data and also difficult to extract features from the dataset automatically. A
semi-supervised learning can be used in domain such as the medical domain. Images in the
medical domain such as CT-Scans and MRI’s can be labelled in a small amount by an expert
radiologist and this can still benefit the model learning and improve accuracy compared to
a unsupervised technique.

2.2.4 Reinforcement Learning

Reinforcement learning operation can be easily understood on the principles of level based
games where on completing a level earns a badge or a reward to the player. In fact, video
games are the most common testing environment for reinforcement learning. In this learn-
ing type the main goal for an agent is to identify next optimal step to reach a goal or optimize
performance for a particular task. As the agent takes a step towards the goal receives a re-
ward [22].

To make choices, the agent depends on previous feedback and explores new tactics that
may help get a larger payoff. It is an iterative process, higher number of iteration better the
performance or strategy of the agent. This can be used to train robots or for autonomous
driving cars.

In this research, the supervised machine learning technique is used due to availability
of the data with labels “Irrigated” and “Non-Irrigated” . The following section explains the
classification task and different algorithms such as Random Forest, K-Nearest Neighbors
and Multi-Layer Perceptrons that have been used to solve the problem of identification of
irrigated and non-irrigated land.

2.3 Classification and Classification Algorithms

The aim of this section is to discuss the task of performing classification in a dataset. Pre-
cisely, this section is concerned with highlighting the problems and difficulties of classifica-
tion.

Classification means categorizing given set of data into classes based on certain features.
Classes can be referred to as target, label or categories. The classification predictive model-
ing is the task of approximating the mapping function from input variable to discrete output
variables [23]. A simple example for classification can be identifying whether an email re-
ceived is spam or not-spam as demonstrated in Figure 2.4.

Figure 2.4: Spam email classification [12].
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There are a number of issues that increase the difficulty of performing classification by
humans as follows:

• High similarity between examples / images of different classes;

• In case of classifying images, large number of images may need to be classified;

• Images in an image classification task can be noisy or unclear, which further increases
the difficulty to reveal their identity;

• A domain expert with background knowledge is needed to analyse and discriminate
between examples of different classes, which can be expensive and time consuming.

Hence, automating the classification task with the help of machine learning algorithms
that have been researched and worked upon previously help perform classification with
ease. For this project, classification is done on pixel values obtained from various sentinel
imagery bands which are explained in further sections. These extracted pixel values which
can also be referred to as features of the sentinel imagery can be fed to various algorithms
such as Decision trees (DT), Multi-layer perceptrons (MLP), Support vector machines (SVM),
k-nearest neighbors (KNN). Even though the classification task is automated a human in the
loop of training the model is still required and plays a key component for initial classification
of features to classes also known as data labelling which will be fed to the model as training
examples for the model to learn and aid the supervised learning.

There are many algorithms that can be used to perform classification. Many machine
learning algorithms are stochastic, which means there is certain randomness every time
the algorithm is run. In the following sections, the classification algorithms that are used
for the identification of irrigated land are random forest, k-nearest neighbor and multi-layer
perceptron, out of these classification algorithms, random forest and multi-layer perceptrons
are stochastic methods.

2.3.1 Random Forest

Random forest is a machine learning algorithm that produces acceptable results in most
cases even with default parameters and without hyper-parameter tuning. Over the last two
decades, use of random forest (RF) classifier [16] has received attention due to excellent
classification results and speed of processing in remote sensing [32, 31, 36].

Random forest is a supervised learning methodology. The forest build is an ensemble of
decision trees [28], usually trained with the “bagging” method [16]. In the simplest form,
bagging method builds multiple decision trees and merges them together to get accurate
and stable prediction described in Figure 2.5.

To build a single decision tree a subset of the training sample is selected. At each node of
the tree randomly subset of features are selected. For each of the feature, different thresholds
are tested to see how they split the samples according to a given criterion such as gini impu-
rity or information gain. The feature and the threshold that best splits the data is recorded
in a node. When the construction of this single tree ends, depending on factors such as max-
imum depth or minimum sample number is reached, samples in each leaf are looked and
the frequency of the labels are maintained. As a result a tree with partition of training sam-
ple according to meaningful samples are created. Since each node is created from randomly
selected features, each tree built in this way is different and is more generalized.

During testing phase a sample from the test set will go through each tree, giving a label
frequency for each tree. Most represented label is generally the final classification result.
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Figure 2.5: Random forest tree example.

2.3.2 K-Nearest Neighbor

K-nearest neighbor (KNN) is also a type of supervised learning algorithm which can be
used for classification and regression. In this section KNN will be explained in terms of
classification. KNN predicts the label for a new data based on distance between the new
data and all the training points. It then selects closest data points from the training set and
the respective class labels [43]. Probability of the test data belonging to classes of the training
data is calculated and the class with highest probability is selected as the class for the new
data point, this is shown in the Figure 2.6.

The distance between the new data point and all training points can be done using dis-
tance measures such as Euclidean distance, Manhattan distance, Hamming distance and
Brute force.

A few disadvantages of KNN is that it requires high memory to store all the training
data, and given that it stores all training, it can be computationally expensive.

2.3.3 Multi Layer Perceptron

The power of neural networks is based from the ability to learn representation in training
data and how to relate it to a class or label. In a mathematical sense, neural networks are
capable of learning any mapping function. The building block of a multi-layer perceptron
is a neuron. These are simple units that have weighted input signals and produce an output
signal using an activation function as depicted in Figure 2.7.

These perceptrons when arranged into a network are known as multi layer perceptrons
and can be used for classification tasks as well as regression tasks [27]. There have been uses
of multi-layer perceptrons in remote sensing classification tasks before returning promising
results[35]. Multi-layer perceptrons are made up of three types of layers

• Input

• Hidden layers

• Output
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Figure 2.6: K-Nearest neighbour example.

Figure 2.7: Perceptron representation.

The input layer is also called the “Visible” layer because it is responsible to take input
from the dataset. Every neuron in this layer depicts per input value or column in the dataset.
The hidden layers are not exposed directly and the simplest network would have a single
neuron in the hidden layer that predicts the output directly. But with increasing difficulty
of problems multiple hidden layers can be present in a network. Finally, the output layer is
responsible for outputting a value determining the class or label of the input.
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2.4 Dimensionality Reduction

Dimensionality reduction aims at reducing the number of features in a dataset. Dimension-
ality reduction is performed for the following reasons:

• To increase the accuracy of trained models, by removal of redundant, noisy and irrel-
evant features;

• Avoiding the curse of dimensionality. Curse of dimensionality means any and all prob-
lems rising with a large dataset;

• Avoiding overfitting;

• To simplify the model which in turn can help to reduce time required for training the
model.

The aim of using dimensionality reduction in this study is to test whether dimensional-
ity reduction can help to improve the performance on the problem at hand and the experi-
ments and results are discussed in Chapter 4. There are various methods for dimensionality
reduction; in this research principal component analysis and feature selection is used to in-
vestigate the effect of dimensionality reduction on the performance of identifying irrigated
lands.

2.4.1 Principal Component Analysis

Principal component analysis (PCA) is one of the methods to reduce features which is re-
ferred to as dimensionality reduction. As the name suggests PCA helps identify principal
components of data. It does so by identifying corelations between data and transforms them
in a dataset with significantly lower dimensions without loss of information and thus select-
ing the principal components.

PCA can be done using five steps which are:

• Standardization of data;

• Computing covariance matrix;

• Calculating the eigenvectors and eigenvalues;

• Computing the principal components,

• Reducing the dimensions of the data set.

2.4.1.1 Standardization Of data

Standardization is the process of scaling the data in a manner that all the variables and their
values lie within a similar range. Standardization is carried out by subtracting each value in
the data from the mean and dividing it with overall deviation in the data set.

Z =
Variable value − Mean

Standard deviation
(2.1)
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2.4.1.2 Covariance Matrix

PCA as mentioned identifies correlation and dependencies among the features in the data
set.A covariance matrix explains the correlation between the different variables in the
dataset.

Mathematically a covariance matrix is a p × p, where p represents dimensions. Each
entry represents covariance of corresponding variables. Consider the following example of
2-dimensional data with variables a and b[

Cov(a, a) Cov(a, b)
Cov(b, a) Cov(b, b)

]
(2.2)

In the above matrix:

• Cov(a, a) represents the covariance of a variable with itself, which is nothing but the
variance of the variable a;

• Cov(a, b) represents the covariance of the variable a with respect to variable b.

2.4.1.3 Calculating the Eigenvectors and Eigenvalues

Calculation of eigenvectors and eigenvalues is another important step towards selection of
principal component analysis. Eigenvectors help better understand where in the data is the
most variance with the help of covariance matrix calculated in the previous step. For every
eigenvector there is a corresponding eigenvalue and hence the eigenvalue simply denote
the scalar of the respective eigenvector.

2.4.1.4 Computing Principal Components

After calculation of the eigenvectors and eigenvalues these need to be ordered in an de-
scending order. The highest eigenvalue is most significant and form the first principal com-
ponent. Principal components of lesser significance are removed to help reduce dimensions.

All data variables that posses maximum information are used to form a matrix known
as feature matrix.

2.4.1.5 Reducing the Dimensions of the Data Set

Finally the original data is rearranged with the principal components that best represent
information of the data set. To replace the original data axis with new components a multi-
plication between the transpose of the original data and the transpose of the obtained feature
matrix is needed to be performed.

2.4.2 Feature Selection

It is no secret that machine learning methods are highly depended on the quality of the data
received as input also most commonly referred as “garbage in, garbage out”. The possibility
of unclean data, meaning missing values or noisy data being present is more when there is
a huge number of features present in the dataset.

Various methods have been proposed in the literature for feature selection that can be
used to select a subset of original features of the dataset to help building a better model.
Generally, feature selection methods can be categorized into the following groups [3]:
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• Filter methods: Filter methods are a pre-processing step, where features are selected
independent of any machine learning algorithms and are based on scores from various
statistical test such as the correlation of features with the class labels.

• Wrapper methods: In wrapper methods, a subset of features are selected and a model
is trained on these features. Based on the performance of the trained model, features
are added or removed. This method is usually computationally expensive.

• Embedded methods: Embedded methods combine the qualities of filter methods and
wrapper methods, it is implemented by algorithms that have an internal feature selec-
tion methods such as genetic algorithm for feature selection.

2.4.2.1 Genetic Algorithms

Genetic algorithms is one of the state of the art techniques for feature selection [30] and falls
under the embedded based method of feature selection. Genetic algorithms are based on the
natural genetics and biological evaluation. In nature genes tend to evolve over successive
generations to better adapt to the enviorment.

The building blocks of genetic algorithms are chromosome, selections, generations, pop-
ulation, fitness function, crossover and mutations. The simplest explanation for a genetic
algorithms are that they operate on population of individuals to produce better approxima-
tions. At each generation a new population is created by selecting individuals according to
the level of fitness in the problem domain and recombining them using operators borrowed
from the original genetics. The offspring can also undergo mutation. Figure 2.8 depicts the
genetic algorithm process.

The following subsections talk about the process of feature selection used which is based
on the basic building blocks of genetic algorithm. Most examples are referred from [4].

Step 1: Initialization First step is to initialize individuals in the population. Since genetic
algorithm is a stochastic optimization method the individual genes are usually initialized
randomly.

Considering that we have with six features. If we generate population of four individ-
uals, we have four different random features as shown in Figure 2.9. In the diagram above
each positive gen means that the corresponding feature is included.

Step 2: Fitness Assignment Every individual in the generated population in Step 1 needs
to be assigned a fitness value. An algorithm of choice is then trained with training values
and errors are evaluated. High error means low fitness and low error means high fitness.
Only individuals with high fitness (low errors) are selected for the next step.

Fitness assignment is done using rank based method where every individual is sorted
based on their errors. The formula for the rank-based method is:

Φ(i) = k · R(i), where i = 1, 2, . . . , N. (2.3)

The fitness assigned to each individual only depends on its position in the individuals
rank and not on the actual error.

As shown in Table 2.2 we have chosen k = 1.5 to calculate the fitness value. The above
table can be presented in a pie chart. Area for each individual is proportional to fitness as
shown in Figure 2.10.

It is clear from Figure 2.10 that fittest candidate is individual 4 and least fittest is the
individual 1.
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Figure 2.8: Genetic algorithm process. [5]

Figure 2.9: Initialization step.

Table 2.2: Fitness Assignment Example
Selection error Rank Fitness

Individual 1 0.9 1 1.5
Individual 2 0.6 3 4.5
Individual 3 0.7 2 3.0
Individual 4 0.5 4 6.0
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Figure 2.10: Individual fitness pie chart.

Step 3: Selection In the selection phase a selection is done for combining individuals for
the next generation.The number of selected individual is N/2 in total at each generation, N
being the population size.

One way to approach selection is elitism where the most likely to survive are the fittest
individual. Usually the elitism is usually set to a small value.

Another method is the roulette wheel, also known as stochastic sampling with replace-
ment. Individuals in this method are selected at random. And the selected individual along
with the one selected in the elitism approach are used for recombination.

Figure 2.11 illustrates the selected individuals.

Figure 2.11: Selection pie chart example.

It can be seen in Figure 2.11 that individual 4 has been selected by the elitism method
and individual 3 has been selected by the roulette method. Number of individuals selected
is always half of the population.

Step 4: Crossover The crossover operation is responsible for recombining the selected in-
dividuals to generate a new population. Two individuals at random are selected and com-
bined to get newer off-springs for the new population. This is done till the new population
has the same size as the old one.

Figure 2.12 depicts the four off-springs generated here the population size remains con-
stant.

16



Figure 2.12: Crossover Example.

Step 5: Mutation There is a high probability of crossover generating off-springs similar
to parents which may cause the new generation to have little diversification. This is solved
by the mutation operation by changing values of certain features in the offspring randomly.
This is done using mutation rate where a random number is generated between 0 and 1 and
if the number is lower than the mutation rate then the variable is flipped. Figure 2.13 depicts
the mutation step and at this stage we have a new generation

Figure 2.13: Mutation Example.

All of the above steps are repeated until a stopping criterion is reached. Each generation
is more adapted to the environment than the old one.

2.5 HyperParameter Tuning

During the training phase of a machine learning model there are numerous parameter set-
tings that need to be set manually to achieve an optimal accuracy and ensure that the model
does not overfit. Selecting these parameters initially at random or working with default pa-
rameters for the baseline model helps get a feel for the accuracy achieved by the dataset in
use.

There is usually a confusion between model parameters and model hyperparameter.

• Model Parameters : These are parameters that are estimated automatically by the
model from the given data. Example : Weights of a neural network

• Model HyperParamters : These are parameters that cannot be estimated by the model
automatically and need to be set manually. Example : Learning rate in neural net-
works.

The best way to understand hyperparameters that are best suitable for the model se-
lected to solve the problem at hand is a method called hyperparameter tuning. It helps de-
termine the right combination of hyperparameters and helps maximize model performance
and avoids the issue of overfitting.

There are two approaches for hyperparameter tuning:
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• Manual hyperparameter tuning : different combinations are selected from various hy-
perparameters available and are experimented with.

• Automated hyperparameter tuning : optimal hyperparameters are found using an
algorithm choice that automates and optimizes the selection of hyperparameters.

There are various automated hyperparameter tuning tools such as

• Scikit-learn

• Hyperpot

• Scikit-Optimize

• Optuna

• Ray.tune

The most common tool is scikit-learn which provides two options the GridSearchCV and
the RandomSearchCV method.

2.5.1 GridSearchCV

In this method predefined hyperparameter values of the model being used are looped
through and a model is fit on the training set. For example, twenty different parameter
values for each of four parameters will require one hundred and sixty thousand trials of
cross validation. This would evaluate to one million six hundred thousand model fits and
one million six hundred thousand predictions in ten cross validation. In the end, the best
parameters from the listed hyperparameters are selected. This is done by defining a dictio-
nary in which hyperparamters are predefined with values it can take, an example of such a
dictionary can be seen in Figure 2.14.

Figure 2.14: Grid parameters example.

GridSearchCV method will try all the possible parameters that are in the dictionary and
constatnly evaluates the model for each combination using a cross-validation method. An
accuracy/loss for all the combinations of hyperparameters and the one with best perfor-
mance is selected.

While Scikit Learn offers the GridSearchCV function to simplify the process, it would be
an extremely costly execution both in computing power and time.

18



2.5.2 Randomized GridSearchCV

Similar to gridsearchcv predefined hyperparameter and possible values added to the dictio-
nary and the process of fitting these possible values to a model and calculating the accuracy
or loss of the model for the best hyperparameter is similar to that of gridsearchcv but the
only and major difference is rather than trying every single combination it randomly selects
these hyperparameter values and fits a model and selects the best hyperparameters.

This allows the users to explicitly control the combinations for the number of parameters.
The number of iterations is set on time or resources available. Performance of a randomized
gridsearchcv will always be lower than that of gridsearchcv in terms of selecting the best
hyperparameters, most of the time the randomized gridsearchcv method generates the best
hyperparameters list in shorter amount of time than that of the gridsearchcv method.

There can also be instances where the random gridsearchcv method performs better than
the gridsearchcv method, this is depicted in Figure 2.15.

Figure 2.15: Grid parameters example[11].

2.6 Related Work

This section aims to provide related work of using different techniques to solve challenges
in agriculture and land evaluation using non-machine learning techniques. The use of, ma-
chine learning techniques to solve these challenges. And finally, the use of Convolution
Neural Network (CNN) method for identification of irrigated from Sentinel-2 imagery.

Machine learning and remote sensing techniques have been applied before in the agricul-
tural domain as well as in healthcare, sales and space engineering. In the discourse around
these techniques, focus is routinely on their diverse application to agricultural land. Re-
search papers study agricultural concerns for example, area wise soil fertility [38], soil or-
ganic matter and pH level matter [40], moisture content [26], soil temperature [29], and the
color, shape and texture of seeds [21], estimation of land use [41] and monitoring irrigated
crop in saline areas [14]. Similar studies and research have been conducted extensively in
countries such as India, the United States of America and Syria. Best to our knowledge,
there has not been a published study in New Zealand for the identification of irrigated land.
This research project could contribute to New Zealand by bridging the literature gap around
the application of machine learning and artificial intelligence techniques for the agricultural
domain.
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2.6.1 Remote Sensing and Non-Machine Learning Approaches

Earlier approaches to identification of irrigated land used more manual approaches [39]
and could be complicated and time consuming. Most of these methods also relied on se-
lecting a cut-off threshold value to identify between irrigated and non-irrigated land. Qi et
al. [33] conducted a research where the purpose of the research was to classify and map
irrigated land in high plains aquifer by using satellite data because in 2002 the only infor-
mation available for the entire region was 20 years old. The main idea represented was to
have a comparison between amount of irrigated land determined in early 1980’s and 1992 to
understand if irrigated land has increased, decreased or remained the same. All the analysis
done was achieved from hard-copy maps and annual reports collected by various offices,
other co-operative agencies collected fact sheets with tabular data. The dataset used was
satellite imagery from the Landsat Thematic Mapper. 40 summer and 40 spring images
were acquired from national cover dataset and processed using band ratio method to en-
hance signatures. A ground reference from 139 countries equalling to 996 square miles was
laid on the classifier and used to determine errors. The paper considers summer and winter
imagery separately and divides them into 9 regions post which it applies masks and collects
signatures which could be either threshold 1, threshold 2, threshold 3 and then the ground
truth data is laid on with each threshold, one of the thresholds with the best percentage of
pixels classified correctly is selected and the data is cleaned up. This method is done for both
summer and winter imagery separately also known as Leaf on and Leaf Off. After this the
datasets for both are merged and percentage for irrigated land is calculated for 4km square
cells and then the data is compared to 1980 datasets. The overall weighted percent correct
was 77.5 to 79.8 percent. The difference from 1980 (13.7 million acres) to 1992 (13.1 mil-
lion acres) was found which was reduced. One obvious problem with this approach is that
identification and selection of cut-off threshold value between irrigated and non-irrigated
land.

Another non machine-learning approach proposed by KrishnaKutty et al. [15] focused
on developing annual irrigated area maps at spatial resolution of 250m for 2000–2015 from
MODIS data. Several spatial data sets of irrigated area at global scale have been developed
such as the USGS Global Land Cover Map using 1km monthly composite of NDVI obtained
from Advanced Very High Ratio Radiometer(AVHRR). The methodology was divided into
two goals 1) Classifying crop types using spectral similarity along the n-dimensional space
vectors and 2) Decision tree model formulated using the Vegetation condition index (VCI).
A LULC map derived from the Indian Remote Sensing (IRS) available at 56m resolution was
used to map agricultural areas suitable for surface irrigation. Other sources for training and
validation data were achieved from the crop calendar, Agroecological zones, Land use and
land cover, DES-irrigation, IWIM-Irrigation data and Landsat -7 ETM+. NDVI was used as
an indicator for irrigated data. To seperate irrigated and non-irrigated data statistical reso-
lution of 250m and a 16 data temporal composite period was used. Another index called as
Leaf Area Index (LAI) also has a positive correlation with NDVI also NDVI saturates when
the LAI reaches a level 4 or more which can be further identified as non-crop vegetation.
For the decision tree model, the NDVI threshold was applied for individual class clusters.
The NDVI threshold was achieved by transforming original NDVI into the VCI. Normalized
VCI can be used to identify NDVI differences between irrigated and non-irrigated areas. The
classification method was calibrated separately for each region considering regions ecologi-
cal potential and short-term weather fluctuations. The classified maps were evaluated using
the agricultural statistics data from ground survey and compared to previously developed
irrigation maps. High resolution irrigated area maps show satisfactory accuracy (R square
= 0.95).
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2.6.2 Machine Learning Approaches

In a method [44] to examine the potential of using Landsat time-series NDVI data is pro-
posed to differentiate different crop types. MODIS data was used where the dataset was
generated from NDVI layers for each image. Data gaps occurring due to scan line errors
were filled using a multi-scale segmentation approach to fill missing NDVI data. This study
was carried out in PHX MMA in Central Arizona. The stratified random approach and in-
telligent selection approach was used for the selection of training data for creating a model
because the amount of data for various crop types were not huge. A total of nine crops
was categorized out of which six single crops and three double crops were available in the
dataset. One of the major challenges in the research was that the phenological curves for
same crops could vary from one farm to another. The LIBSVM library was used for Sup-
port Vector Machine where C-Support vector classification. The 10-fold cross validation
approach resulted in the best parameter selection where the accuracy on validation data
achieved was 90%. Wheat and Barley were the two crops which were highly misclassified
due to the spectral similarity.

2.6.3 Convolution Neural Network Approach

More recent approaches utilise machine learning techniques which help identify and dif-
ferentiate between irrigated and non-irrigated land. In a study [17] carried out in the state
of Montana over the years –2019. The main aim of the study was to identify difference
between irrigated, unirrigated and uncultivated land. Landsat imagery was used for the re-
search. Unlike most previous approaches where Random Forest is used with remote sensing
imagery this research used an ensemble of convolution networks which work on Landsat
Surface Reflectance which measures the fraction of incoming solar radiation reflected from
earth’s surface to the Landsat sensor. A modified U-Net [37] approach where the model was
divided into two parts: a contracting path to extract low level features; and an expanding
path which incorporated low level features from contraction path to produce the high reso-
lution predictions. The imagery used in the research consisted of clouds, snow and shadow
so that the model would be forced to learn a robust representation of irrigated land. F1-
scores were used as an evaluation metric where the U-Net model had an F1-score of 0.86 in
identifying irrigated land and 0.97 in identifying non-irrigated land, which outperforms the
other methods in the study. Although the accuracy was better than that of the other, one
problem of false positive still occurred where the model would misclassify a wetland as an
irrigated land.

2.7 General Challenges

One of the primary challenges when it comes to the application of machine learning and Ar-
tificial Intelligence to the field of agriculture is that no two environments will be exactly
alike. This makes the testing, validation, and successful rollout of applied technologies
much more laborious than in most other industries. The weather, soil type, land type is
also different depending on the geography. The other major challenges related to the iden-
tification of irrigated land are dealing with false-positive areas such as short rotating crops,
seasonal variations in irrigation use and differences across different climate zones.The chal-
lenge for seasonal variations can be overcome by using the 13-band satellite imagery and
Sentinel-1 which could help reveal variations in irrigated land throughout time, this can
also help if there are cloud disturbances.
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Chapter 3

The Dataset and Baseline Methods

This chapter focuses on the details of the datasets used in the research to evaluate the per-
formance of the baseline models. Along with this the chapter focuses on the study area,
the balance accuracy measure used for the experiments and finally the description of the
baseline models.

As mentioned in the Section 2.3, since random forest and multi-layer perceptrons are
stochastic methods, it is advised that these methods need to be run thirty to fifty times and
an average accuracy needs to be calculated in order to have concrete conclusions and rule
out the randomness in the results. Due to a few hurdles such as delay in access to high
power computation machines, these stochastic tests were done five to eight times and an
average result has been reported. It was noticed that the experiments when executed for
five to eight times each time produced results close to each other, there was not a huge
difference between accuracies.

3.1 The Dataset

The study area is the region of Canterbury, New Zealand. The Canterbury region as men-
tioned has the highest amount of irrigation land in use . Canterbury has a total of 546,205
hectares of irrigated land accounting for 64.05% of the total irrigated land area in the region
of New Zealand [18]. The Canterbury region has an extreme contrast between irrigated and
non-irrigated land and this contrast is the highest in the region as shown in Figure 3.1.

The dataset used in the project is based on imagery collected from Sentinel-2 satellite.
The sentinel imagery has 13 bands out of which five bands blue (B02), red (B03), green
(B04), near infrared red (B08) and short wave infrared (B12) described in table 2.1 are used
and two important statistics such as the Normalized Difference Vegetation Index (NDVI)
and Normalized Difference Water Index (NDWI) which are based on a set of calculation on
the five bands mentioned. Before we dive into understanding the data collection process
and data statistics it is necessary to understand the normalized difference vegetation index
and normalized difference water index.

3.1.1 Normalized Difference Vegetation Index

The normalized difference vegetation index is often used to monitor drought and forecast
agricultural production. NDVI is preferable for vegetation monitoring since it compensates
for changes in lighting conditions, exposure and other factors [8].

NDVI is calculated using the near infrared red band (B08) and the red band (B03). The
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Figure 3.1: Study Area and data used in analysis. Subfigure a) Normalized Difference Vege-
tation Index. Subfigure b) Training and Testing Points

formula for NDVI is:
NDVI =

B08 − B03
B08 + B03

(3.1)

The formula shows that the density of vegetation at a certain point of the image is equal
to the difference in the intensities of reflected light in the red and infrared range divided
by the sum of these intensities. This index defines values from −1.0 to 1.0, basically repre-
senting greens, where negative values are mainly formed from clouds, water and snow, and
values close to zero are primarily formed from rocks and bare soil. Very small values (0.1
or less) of the NDVI function correspond to empty areas of rocks, sand or snow. Moderate
values (from 0.2 to 0.3) represent shrubs and meadows, while large values (from 0.6 to 0.8)
indicate temperate and tropical forests. Crop Monitoring successfully utilizes this scale to
show farmers which parts of their fields have dense, moderate, or sparse vegetation at any
given moment. An example can be seen in Figure 3.2.

3.1.2 Normalized Difference Water Index

Droughts can cause severe stress on vegetation on Earth. It is necessary to identify these
areas in time or this can severely affect the crops. NDWI index helps control irrigation in
respect to the project it is helpful to understand wetness in the land which can support
learning to understand if a piece of land is irrigated or not [9].

NDWI is calculated using the near infrared red band (B08) and the short wave infrared
(B12). NDWI was introduce in the 1996. This is calculated as:

NDWI =
B08 − B012
B08 + B012

(3.2)
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Figure 3.2: Comparison between true image, NDVI image NDWI image (Left to Right).

The formula shows that instead of using the red range, the reflection intensity in which
is determined by the presence of chlorophyll, a short-wave near-infrared (SWIR) is used in
which high absorption of light by water occurs. A wider range of 1500–1750 nm is possible.
The use of the same near infrared (NIR) as in the case of NDVI is due to the fact that water
does not absorb this part of the electromagnetic spectrum, thus the index is resistant to
atmospheric effects, distinguishing it from NDVI.

The NDWI product is dimensionless and varies from −1 to +1, depending on the con-
tent, as well as the type of vegetation and cover. The high NDWI values correspond to high
plant water content and coating of high plant fraction. Low NDWI values correspond to
low vegetation content and cover with low vegetation. This can be seen in Figure 3.2.

3.1.3 Data Collection and Train-Test Sets

The Sentinel-2 data can be collected from various sources such as the sentinels scientific data
hub on the Copernicus website, the Sentinel-hub website and this data is also hosted on the
Amazon Web Services storage. The sentinel-data for this project was downloaded using the
AWS s3 storage and python script.

A part of the Canterbury region was used in this study. This is usually referred to as a
scene in Sentinel-2. The scene utilized is called “NN”, this is depicted in Figure 3.3 where
CM,DM,EM are scenes from an user product for different regions.

The data is collected for all four seasons: summer (December–February), autumn
(March–May), winter (June–August) and spring (September–November). Five images per
seasons were collected totalling in twenty images per year. The years targeted were
2018,2019 and 2020, a total of sixty images were collected. The five images included the
blue (B02), red (B03), green (B04) and the calculated NDVI and NDWI bands. Each image
was made up of 10980×10980 pixels. The dataset has twenty features in total which con-
sists of pixel value at different locations from one of the five sentinel band images and a
class label such as “Irrigated” and ”Non Irrigated”. The labels were collected from polygon
shape files provided by Ministry for the Enviorment New Zealand, which are open-sourced
and available from the MFE website. The survey was carried out for the years 2017 and a
recent survey was carried out in 2020. The 2017 polygon shape file consisted of a total of
13491 polygons for the 2017 survey and the 2020 survey had a total of 16494 polygons.The
data for the years 2018 and 2019 were labeled based on the 2017 polygons and the data for
the year 2020 was labeled based on the 2020 polygon. There is usually an assumption that
land used for irrigation does not change for approximately five years, this is clearly visible
from the 2017 and 2020 polygon shape files where all the polygons from 2017 still exist in
the 2020 polygon shape file except a addition of a few more polygons can be seen in the
2020 survey. The Figure 3.4 shows that green polygons are common to 2017 and 2020 and
the purple polygons are from 2020.

The counts for dataset such as number of irrigated and non-irrigated land in each year
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Figure 3.3: Relation between Sentinel-2 data concepts

Table 3.1: Dataset Count
Training set Test set

Irrigated Non-irrigated Total Irrigated Non-irrigated Total Overall

2018 29.17% 70.82% 581581 29.11% 70.89% 582660 1164241
2019 29.17% 70.82% 581581 29.11% 70.89% 582660 1164241
2020 31.06% 68.93% 581581 31.00% 69.00% 582660 1164241

in training and test set and the total number of counts is mentioned in Table 3.1.

3.2 Balanced Accuracy

The accuracy measure used through out the project is balanced accuracy. Balanced accuracy
is good to use in situations where the test set has an imbalance. In our case as shown in
Table 3.1 classes are highly imbalanced with non-irrigated classes are much higher than
irrigated classes. Balanced accuracy is measured on the basis of sensitivity (true positive
rate) which answers “how many positive cases were identified by the model” and specificity
(true negative rate) which answers same question but for the negative cases depicted in
Figure 3.6. Consider a confusion matrix as shown in Figure 3.5.

Balanced accuracy is the arithmetic mean of the sensitivity and specificity:

Balanced Accuracy =
Sensitivity + Specificity

2
. (3.3)

If classes are imbalanced and we use accuracy as measure the chances of achieving an ac-
curacy if only negative examples were predicted correctly could be higher than predicting
both positive and negative examples. Consider an example shown in Figure 3.7.
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Figure 3.4: Irrigated polygon 2017 (light-green) and 2020 (purple).

Figure 3.5: Confusion Matrix.

For the example if accuracy is calculated for the proportion of correct predictions is

5 + 10000
5 + 50 + 10 + 10000

= 99.4%

and if accuracy is calculated only for the negative predictions the accuracy is

0 + 10050
0 + 0 + 15 + 10050

= 99.9%

.

Balanced accuracy attempts to account for the imbalance in class. The computation for
balanced accuracy for the example would be as follows:
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Figure 3.6: Sensitivity and Specificity.

Figure 3.7: Example for classifier with imbalanced classes.

Sensitivity =
5

5 + 10
= 33.3%,

specificity =
10000

50 + 10000
= 99.5%,

BalancedAccuracy =
Sensitivity + specificity

2
,

=
33.3% + 99.5%

2
= 66.4%

This shows that the classifier when measured using balance accuracy is better at giving
an understanding of the models performance even with an imbalance class issue.

3.3 Baseline Models

This section discusses the baseline approaches used and the performance in terms of bal-
anced accuracy and time taken by the model for training. The dataset used for the baseline
model is the year 2018 where the entire dataset is split into 50% training and 50% testing.
All methods used in the project are built using the scikit-learn library.

The models were trained on a machine with a i5-9th generation CPU, 8GB of Ram and
an Nvidia GTX 1650.
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3.3.1 Random Forest

A random forest approach was used for building a baseline model with default parame-
ters from the ensemble module of the scikit-learn library. A list of parameters, values and
definition of these parameters used are shown in table 3.2.

Table 3.2: This table shows random forest parameters used
Parameters Description value

n estimators The number of trees in the forest 100
criterion Function to measure quality of a split gini
max depth The maximum depth of the tree None
min samples split The minimum number of samples required to split an internal node 2
min samples leaf The minimum number of samples required to be at a leaf node 1
max features The number of features considered when looking for the best split auto
max leaf nodes Grow trees with max leaf nodes in best first fashion None
bootstrap Whether bootstrap samples are used when building trees True

The time taken for training a random forest sample on the dataset is 11 minutes and 24
seconds. The balance accuracy is 85.96%.

3.3.2 K-Nearest Neighbors

The second baseline approach was the k-nearest neighbor with default parameters from the
neighbors module of the scikit-library. A list of parameters, values and definition of these
parameters used are shown in Table 3.3.

Table 3.3: This table shows k-nearest neighbor parameters used
Parameters Description value

n neighbors The number of neighbors used 5
weights Weight function used in prediction uniform
algorithm The algorithm used to compute the nearest neighbor auto
n jobs The number of parallel jobs to run for neighbor search None

The time taken for training a k-nearest neighbor model on the dataset is 2 hours and 21
minutes. The balance accuracy is 85.33%.

3.3.3 Multi-Layer Perceptrons

The final baseline approach was the multi-layer perceptron with random parameters from
the neural network module of the scikit library. A list of parameters, values and definition
of these parameters used are shown in Table 3.4.

Table 3.4: This table shows multi-layer perceptron parameters used
Parameters Description value

hidden layer size The hidden layer represent layer in between the input and output layer 512,256,128,64,32
activation Activation function for the hidden layer relu
solver The solver for weight optimization adam
batch size The mini batch size for stochastic optimizer auto
learning rate The initial learning rate 0.001
early stopping Whether to use early stopping to terminate training when validation score is not

improving
True

The time taken for training a multi-layer perceptron model on the dataset is 41 minutes.
The balance accuracy is 86.42%.
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3.3.4 Baseline Model Result Discussions

Table 3.5: Baseline models balance accuracy’s and time to run model
Model Balance Accuracy Run Time

Random Forest 85.96% 11 Minutes 24 Seconds
K-Nearest Neighbor 85.33% 2 Hours and 23 Minutes
Multi-Layer Perceptron 86.42% 41 Minutes

The highest accuracy as can be seen in Table 3.5 is achieved from using multi-layer per-
ceptrons. The accuracy’s between random forest and k-nearest neighbors is almost similar.
In terms of time taken random forest is the fastest amongst the other baseline methods. The
longest time taken is the k-nearest neighbor because instead of learning a discrimitive func-
tion from the training data it memorizes the training data. Each time we want to make a
prediction, KNN is searching for the nearest neighbor(s) in the entire training set and hence
it is time and computationally expensive.
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Chapter 4

Experimental Design, Results and
Discussion

The focus of this chapter is to discuss in detail the different experiments carried out and
discus the results of these various experiments. The chapter first discusses feature selection
using techniques such as principal component analysis and genetic algorithm. Post feature
selection, the chapter discusses checking and understanding the maximum number of sam-
ples required by the model. Finally, the chapter closes with an overall results discussions
from this study.

4.1 Dimensionality Reduction Experiments

As mentioned in Section 2.4, dimensionality reduction is usually done for various reasons.
In this project, there are twenty one features in total which is not huge and can be all used for
training the model. Dimensionality reduction is carried out to rule out the possibility of the
consisting of noise or random fluctuations in the training data which affects the performance
of the model negatively. When these noise or random fluctuations do not exist in the testing
set make the test accuracy largely lower than the train accuracy this is known as overfitting.

Dimensionality reduction were carried out using principal component analysis ex-
plained in Section 2.4.1 and genetic algorithm for feature selection explained in Section 2.4.2.

4.1.1 Feature Selection using Principal Component Analysis

Principal component analysis was performed using the scikit-learn API. Every parameter
except the number of components (n components) were set to default. The Table 4.1 shows
a description of the parameters used and their value.

Table 4.1: This table shows principal component analysis parameters used
Parameters Description value

n components Number of most important dimensions or components to be used 16
copy If set to false data passed to the fit function are overwritten True
svd solver If auto the solver is selected by a default policy auto
iterated power Number of iterations for the power method computed when svd solver = ’randomized’ auto
learning rate The initial learning rate 0.001
random state Used to get reproducible results across multiple functions None

The choice of n components is based on an approach to evaluate the same model with
different number of input features and choose number of features that result in best average
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performance. The PCA was evaluated twenty times using the random forest classifier to
determine the best choice for the number of dimensions. Post running the PCA method
twenty times and averaging the results returned choice of n components as sixteen. This
can be seen in the box plot in Figure 4.1.

Figure 4.1: Plot for optimal selection of n components.

The balance accuracy calculated for this methodology is an average of the balance ac-
curacies over five runs for the random forest and the multi-layer perceptrons due to the
stochastic nature of the algorithms. The experiments were carried out on the same baseline
method dataset of 2018 with a train test split of 50/50 to check the performance.

Table 4.2 shows the results of the principal component analysis performed on the ran-
dom forest algorithm, k-nearest neighbor and the multi-layer perceptron.

Table 4.2: Principal component analysis results for random forest, k-nearest neighbors and
multi-layer perceptrons
Model Baseline Accuracy Balanced Accuracy Run Time

Random Forest 85.96% 85.78% 14 Minutes 01 Seconds
K-Nearest Neighbor 85.33% 85.21% 1 Hour and 96 Minutes
Multi-Layer Perceptron 86.42% 86.41% 1 Hour

It is visible that the accuracies when compared to the baseline model in Table 3.5 the
changes are minimal and also the time for each model is higher for random forest, multi-
layer perceptron and less for the k-nearest neighbor than the baseline model. With these
results it is evident that there is no need for dimensionality reduction and that the twenty
features are needed for training the models, since these do not improve the performance
time neither the accuracies.
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4.1.2 Feature Selection using Genetic Algorithm

Principal component analysis aimed at reduction in dimension by selecting components
that best explained the features; however the genetic algorithm approach aims at selecting
features. Selecting features helps reduce the number of features by selecting from existing
feature set rather than creating new features. The accuracy of the predictive model is con-
sidered as the fitness of the solution, where the accuracy of the model is obtained using
logistic regression and random forest.Technically, the choice of learning algorithm can be
any algorithm but logistic regression is usually faster to train.

The code for feature selection using genetic algorithm is based on the steps mentioned
in Figure 2.8. The main call to the genetic algorithm code takes in three positional argu-
ments which are the model, the features and the class labels. The parameters selected for
the logistic regression approach are describe in Table 4.3.

Table 4.3: This table shows parameters used for the logistic regression based learner for
feature selection using genetic algorithm
Parameters Description value

solver Algorithm to use in the optimization problem lbfgs
max iter Maximum iterations to be taken for solvers to converge 1000
random state To ensure reproducible results 7

Since the logistic regression is also a stochastic method these tests were run five to ten
times to check the number of features returned changed or not. The parameters for the ge-
netic algorithm such as the number of generation was set to five and the size of population
was set to ten and a cross validation split of five was selected after trying a few combina-
tions these parameters returned best results keeping in mind the time taken to select best
parameters.

These tests were performed twice with different random seed returned fifteen features
each with different accuracies of 82.42% and 82.23%. The selected features are shown in
Figure 4.2.

Figure 4.2: Genetic algorithm selected features.

Since the accuracy achieved for both trials is very close and the number of features se-
lected is also same. To test the selected features we will choose the features with the 82.42%
accuracy. If there is a case where both the accuracies are similar then the features best repre-
senting the problem background are selected.

The Table 4.4 shows the results of the genetic algorithm selected feature analysis per-
formed on the random forest algorithm, k-nearest neighbor and the multi-layer perceptron.

Table 4.4: Genetic algorithm feature selection results for random forest, k-nearest neighbors
and multi-layer perceptrons
Model Baseline Accuracy Balanced Accuracy Run Time

Random Forest 85.96% 85.44% 9 Minutes 63 Seconds
K-Nearest Neighbor 85.33% 84.81% 1 Hour and 30 Minutes
Multi-Layer Perceptron 86.42% 86.79% 1 Hour and 13 minutes

It is visible that the accuracies when compared to the baseline model in Table 3.5 and
Table 4.2 the changes are minimal and also the time for each model is h higher for k-nearest
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neighbor, multi-layer perceptron and less for the random forest than the principal compo-
nent analysis method. With these results it is evident that all the features that are present in
the dataset are necessary as it does not improve performance of the model in terms of time
or balance accuracy.

4.2 HyperParameter Tuning Experiments

As mentioned in Section 2.5 there are multiple hyperparamters that can be selected for each
of the model. In the baseline model of random forest, k-nearest neighbors and multi-layer
perceptrons we worked with default and random parameters to understand the perfor-
mance of the model on the dataset, these hyperparameters are listed in Section 3.3.

Selection of hyperparameters is important to ensure that we can achieve better accu-
racy or assure that the model does not end up overfitting. For this experiment we used
scikit-learn library and the Randomized GridSearchCV method for hyperparameter tuning
because it is much faster as compared to the GridSearchCV method.

Hyperparameter tuning was done for the models based on the same dataset used in the
baseline model. Since the total dataset size is 1,164,241 samples we use 500,000 samples to
ensure that the time taken to identify these hyperparameters is faster and the accuracy of
the hyperparameters selected is acceptable.

4.2.0.1 HyperParameter Tuning Random Forest Model

There are various parameters that can be set in the random forest method of the scikit-learn
library. According to the documentation for the random forest method in the scikit learn
library there are approximately nineteen different hyperparamters to tune [10]. Out of these
nineteen in this experiment selected six hyperparameters to tune. These six hyperparame-
ters are listed in Table 4.5.

Table 4.5: Random Forest HyperParameters used for tuning
HyperParameters Description

n estimators The number of trees in the forest.
max features The number of features to consider when looking for the best split.
max depth The maximum depth of the tree.
min samples split The minimum number of samples required to split an internal node.
min sample leaf The minimum number of samples required to be at a leaf node.
bootstrap If false, the whole dataset is used to build each tree.

The time taken for identifying the hyperparameters 46 minutes and 8 seconds. The accu-
racy achieved for the hyperprameter selection is 82.31%. The value of the hyperparameters
tuned are shown in Table 4.6

Table 4.6: Random Forest HyperParameter Values
HyperParameters Values

n estimators 1000
max features sqrt
max depth 110
min samples split 2
min sample leaf 1
bootstrap True
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4.2.0.2 HyperParameter Tuning K-Nearest Neighbor

There are various parameters that can be set in the k-nearest neighbor method of the scikit-
learn library. According to the documentation for the KNN method in the scikit-learn library
there are approximately eight different hyperparamters to tune [6]. Out of these eight in this
experiment selected three hyperparameters to tune. These three hyperparameters are listed
in Table 4.7.

Table 4.7: K-Nearest Neighbor hyperparameters used for tuning
HyperParameters Description

n neighbors The number of neighbors to use
weights Weight function to be used in prediction
algorithm Algorithm used to compute the nearest neighbors

The time taken for identifying the hyperparameters 37 minutes and 41 seconds. The
accuracy achieved for the hyperprameter selection is 80.40%. The value of the hyperparam-
eters tuned are shown in Table 4.8.

Table 4.8: K-Nearest neighbor hyperparameter values
HyperParameters Values

weights uniform
n neighbor 7
algorithm brute

4.2.0.3 HyperParameter Tuning Multi-Layer Perceptron

Just like random forest and k-nearest neighbors, the multi-layer perceptron has various pa-
rameters that can be set in the scikit-learn library. According to the documentation for the
MLP method in the scikit-learn library there are approximately twenty-three different hy-
perparamters to tune [7]. Out of these twenty-three in this experiment selected five hyper-
parameters to tune. These five hyperparameters are listed in Table 4.9.

Table 4.9: K-Nearest Neighbor HyperParameters used for tuning
HyperParameters Description

hidden layer size The number of hidden layers in the network.
activation Activation function for the hidden layer.
solver Solver for weight optimization.
alpha L2 penalty parameter.
learning rate Learning rate scheduled for weight updates.

The time taken for identifying the hyperparameters 28 minutes and 26 seconds. The
accuracy achieved for the hyperprameter selection is 83.56%. The value of the hyperparam-
eters tuned are shown in Table 4.10.

4.3 Sub-Sampling Experiments

As seen in Table 3.1 the number of samples in each data set is approximately close to one
million. To train and test a model with a million samples is time consuming and resource
intensive. Since the experiments are run on a single machine with specifications mentioned
in the Section 3.3. The experiment in this section aims at understanding how much data
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Table 4.10: Multi-Layer Perceptron HyperParameter Values
HyperParameters Values

hidden layer size 512,256,128,64,32
activation relu
solver sgd
alpha 0.0001
learning rate constant

is actually needed to perform identification of irrigated land from sentinel imagery. We
have already seen in the results from the previous experiments that all twenty features are
important. The question this section tries to answer is whether it is necessary to have ap-
proximately one million samples to achieve an optimal accuracy or we could still achieve an
optimal accuracy with a small number of training data to train a model?

All experiments conducted up-to now are performed on the 2018 dataset alone. In this
section of experiment the training data is combined of 2018 and 2019 and is tested on the
2020 dataset. The reason for selecting only 2018 dataset as training and test set in previous
experiments was to keep tests such as hyperparameter tuning unbiased. If performed on
the entire dataset the model would not be generalised. From previous experiments we have
understood that feature selection does not improve the model and understood the optimal
hyperparameter to be used. Here the class value, i.e, irrigated and non-irrigated for the
training set are based on the 2017 polygon data and the class values for the test set is based
on the 2020 polygon data provided by Ministry for the Enviorment.

The sub-sampling has been done on thousand, five thousand, hundred thousand, five
hundred thousand samples selected randomly and the entire dataset which is 2,328,482 sam-
ples.

The hyperparameter settings for the experiments mentioned are based on the hyperpa-
rameters achieved from Section 4.2. The following Tables 4.11 to 4.13 provide results on the
time taken for each sample size and the accuracy achieved.

Table 4.11: Random forest sub-sample results
Sample Size Accuracy Time

1000 79.16% 18.79 seconds
5000 81.26% 24.43 seconds
100000 82.86% 1 minute 77 seconds
500000 83.23% 8 minutes 73 seconds
All (2328482) 83.19% 1 hour 8 minutes

Table 4.12: K-Nearest neighbor sub-sample results
Sample Size Accuracy Time

1000 77.67% 43.41 seconds
5000 79.37% 1 minute 25 seconds
100000 81.38% 6 minutes 64 seconds
500000 81.85% 18 minutes 22 seconds
All (2328482) 81.72% 37 minutes 06 seconds

When compared to the results of Table 3.5 it is can be observed that the accuracy has
dropped this could be because of a few reasons such as combining the 2018 and 2019 dataset
for training has more samples that are used for training than the baseline model, this helps
better generalise the model.

This section proves that 500,000 samples is an good enough number of samples for either
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Table 4.13: Multi-layer perceptron sub-sample results
Sample Size Accuracy Time

1000 82.10% 51.09 seconds
5000 80.02% 49.96 seconds
100000 82.43% 4 minutes 35 seconds
500000 82.87% 39 minutes 25 seconds
All (2328482) 81.28% 9 hours 27 minutes

of the three models is sufficient, it achieves a good accuracy and the time taken to train the
model is much faster than training on the full set. This is true for each of the three methods
and provides a good trade-off between training time and accuracy.

The Figure 4.3 is the region in Canterbury on which the experiments were carried out.
The white regions in this image is ocean/water streams. Since the research is focused on
identifying irrigated pixels from non-irrigated pixels, water stream or oceans are not de-
tected by this model.

The best results is achieved from the random forest model by using the sub-sampling
method of 500000 samples. This can be seen in Figure 4.4, where the white color indicates
correctly identified non-irrigated pixels, green color indicates correctly identified irrigated
pixels and the red color is the misclassified pixels by the model.

Figure 4.3: Canterbury region used for the model.
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Figure 4.4: Random forest sub-sampling output.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This chapter summarises the obtained reuslts that are discussed in the baseline model men-
tioned in Section 3.3 and the experimental design discussed in Chapter 4. This research has
successfully proved that the pixel classification of irrigated land from non-irrigated land
can be done adopting a machine learning approach over a manual approach which is time
consuming and expensive. The research has proposed the use of Sentinel-2 imagery and fea-
tures generated from this imagery, where all the twenty features are important and needed
for the model to achieve good performance. Along with proving that an automatic approach
can be used for this task the results obtained form the experiments in Section 4.3 show that
only five hundred thousand samples are enough for training a model. The performance
of the automated method cannot be compared to the desktop-analysis method being used
currently by the ministry for enviorment since the desktop analysis method is based on
multiple sources such as previous land ownership documents, surveys [18].

The results in the experiments clearly show that adopting a machine learning technique
can be utilized to identify irrigated land from non-irrigated land using traditional machine
learning techniques. The automated techniques definitely overpowers the manual method
because these results when done automatically provide results much faster than a desktop
analysis method, saves cost, requires less human intervention to create the irrigated land
results and most importantly can be performed as and when needed.

5.2 Future Work

The overall goals of this research has been achieved successfully. However, there is still
scope to improve or build newer applications based on this research in the future. Few
directions that can be looked into in the future are as follows:

• Due to the time constraint for the research, points used in training and testing were
collected at hundred meter distance and a pixel classification was done to identify
irrigated land. Each pixel value in the image can be collected and a better and more
detailed identification can be performed.

• This research can be extended to other regions of New Zealand because no two regions
would have the same land characteristics and hence this can help in understanding if
the same model would work for different regions or new data would have to be added
a new model would have to be trained.
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• Newer features can be constructed using state of the art techniques such as auto-
encoders and it can be used in the model training to understand if these features con-
tribute towards increasing the accuracy of the model.

• Once land is identified as irrigated or not this land could also be measured and water
distribution for irrigation based on other statistics could also be controlled.

• If a labeled image dataset for irrigated and non-irrigated land is collected then a possi-
ble option to solve this task could be use of convolution-neural networks as mentioned
in [17] and segmentation using algorithms such as u-net [37].
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