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Discovering input parameters that yield optimal outputs from 
black-box functions poses a challenge in various domains, 
including machine learning and robotics applications. These 
challenges stem from the complex relationships among input 
parameters and between inputs and outputs, relationships that are 
unknown to the search algorithm. This means conventional 
mathematical techniques like gradient descent and differentiation 
are inapplicable, instead necessitating a systematic trial-and-error 
exploration of inputs. Numerous algorithms have been developed 
to address this issue; however, their performance falls significantly 
short of perfection. Recognising the potential for improvement, the 
objective of this project has been to design, implement, and 
evaluate novel algorithms aimed at addressing limitations within 
existing ones and surpassing their performance. This evaluation 
necessitated the creation of a testing environment to facilitate 
robust comparisons between different algorithms. Emphasis has 
been placed on stochastic methods that harness probability 
distributions to guide the exploration of potential optimal inputs. 
Within this scope, CMA-ES and Bayesian Optimisation have both 
demonstrated success through different techniques, but they also 
exhibit significant shortcomings. As such, the project explores 
concepts that leverage the successful aspects of both algorithms to 
address their flaws and enhance performance. The research has 
produced two innovative enhancements to these existing 
algorithms and demonstrates their potential to surpass current 
performance. 

 

I. INTRODUCTION 

 
inding which values to input into a complex continuous 
black box function to yield the global optimum of the 
function is an important task in various fields, 

including machine learning and robotic applications [1], [2]. 
However, since these functions are often derived from complex 
problems they lack a clear underlying formula, instead having 
an ill-conditioned and rugged output space [3]. Traditional 
mathematical techniques such as differentiation and regression 
are unable to directly optimise these functions due to this 
complexity [4]. Therefore, an alternative methodology is 
required to search the space of all potential solutions through 
trial and error in which points are selected and evaluated to find 
the global optima [5]. Searching such a complex space through 
trial and error is a challenging task, which is greatly exacerbated 
by the curse of dimensionality [4]. The curse of dimensionality 
means that as the dimension of the problem increases, the 
solution space expands exponentially, making it increasingly 
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more difficult to search. Additionally, the computational cost of 
evaluating a single potential point in these complex functions 
can be prohibitively high, making an exhaustive search 
impractical [6]. Hence, an algorithm is required that is capable 
of effectively searching the large, rugged, and ill conditioned 
solution space for the global optimum, while minimising the 
number of point evaluations needed. 

A. Motivation 

Numerous algorithms have been developed to tackle the 
challenges of high-dimensional black box optimisation. These 
algorithms employ various techniques, such as stochastic 
evolutionary methods, derivative free optimisation, and others 
[3]. However, given the complexity of this problem and the 
objective of minimising the number of points evaluated, it is 
challenging to make highly effective algorithms. This leaves 
significant room for further improvement over existing 
algorithms. Therefore, the goal of this project is to explore 
novel ideas for algorithms that can more effectively address the 
challenges of high-dimensional optimisation. The ultimate 
objective is to design and implement a new algorithm that 
surpasses existing approaches in terms of efficiency and 
effectiveness, contributing to advancements in the field of high-
dimensional optimisation algorithms.  

Given the multitude of diverse existing approaches to high-
dimensional optimisation, the scope of this project becomes 
broad. This makes it necessary to impose a restriction upon 
potential new algorithms to establish a clearer research 
direction. This restriction will be that stochastic methods that 
utilise probability distributions will be the only algorithms 
explored in this project. The probability distributions will 
model predictions of which regions of the solution space are 
most promising to explore next. This direction includes existing 
algorithms such as Bayesian optimisation and CMA-ES, which 
select points for evaluation based on a probabilistic model that 
predicts lucrative regions of space [6], [7]. The success of these 
functions at optimisation black box functions highlights how 
the use of probability distributions can be an effective solution 
to such problems. So, the algorithms explored within this 
project utilise a probabilistic model for selecting points to 
evaluate next, adhering to the defined scope restrictions. 

B. Solution 

To develop a new algorithm for effective high-dimensional 
optimization, it was essential to first understand existing 
algorithms and their approaches to address the challenges at 
hand. Then, using the concepts learned, new ideas could be 
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created that had the potential to optimize more efficiently. 
Building upon this knowledge allowed partially or entirely new 
algorithms to be designed and implemented. These new 
algorithms could then be evaluated in comparison to existing 
ones to see if they offered significant improvement.  

The algorithms developed in this project draw significant 
inspiration from both Bayesian Optimization and CMA-ES. 
Specifically, this project explores concepts that blend the 
strengths of both algorithms, combining them in a synergistic 
way to leverage their successful aspects. This involves 
addressing the shortcomings in one algorithm with the strengths 
of the other, with the aim of enhancing overall performance.  

To allow for the evaluation of new algorithms in comparison 
to existing algorithms, a testing environment was required that 
could run and evaluate them as needed. The three metrics each 
algorithm was assessed on were: 1) How good was the optimum 
produced? 2) How many points had to be evaluated to find an 
optimum? 3) How much computation was required to find an 
optimum? For each algorithm, all three metrics were measured 
for different optimization problems over a range of dimensions, 
varying from low numbers (under 20) to high numbers 
(multiple hundreds). Additionally, each situation had to be run 
multiple times so that the algorithm's average performance 
could be calculated, and its consistency could be determined.  

For all the data produced, tables and graphics were generated 
that could be analysed to assess whether any new algorithms 
could beat the existing algorithms. To successfully solve the 
problem, any new algorithm created had to be able to 
consistently beat existing algorithms for either metric 1 or 2 for 
at least some functions and dimensionality ranges. 
Additionally, metric 3 had to remain low enough that measuring 
the values of metrics 1 and 2 remained feasible. 

II. RELATED WORK 

A. Curse of Dimensionality 

One of the key challenges in high-dimensionality scenarios is 
the curse of dimensionality, which is how spaces become 
considerably more challenging to handle as their dimensionality 
rises [8]. The curse of dimensionality poses significant 
challenges in black box optimisation problems, necessitating 
effective strategies to prevent rapid degradation of algorithm 
performance with increasing dimensions [9]. Firstly, as the 
dimensionality increases, data points become more sparsely 
distributed across the space, meaning there is a substantial gap 
between data points. This sparsity makes it difficult to 
accurately predict the values of the black box function due to 
an insufficient evaluated points for modelling the function's 
behaviour. Additionally, as the dimensionality of the problem 
increases, the number of parameters any model must learn 
increases substantially to account for the increased dimensions 
[9]. This means expanding dimensionality creates a challenge, 
demanding more complex models trained on more sparse data. 
Furthermore, this increasing dimensionality renders distance 
values less meaningful, as the distances between data points 
distributed across the space become more uniform [8]. This 

poses challenges when performing tasks such as comparing 
distances, as the compared distances will be far more similar in 
value, thus providing less information [8]. This places value on 
techniques that do not rely on distances to make inferences 
about high-dimensionality spaces. 

B. Bayesian Optimisation 

One such solution for continuous black box optimisation is 
Bayesian Optimisation [6]. Bayesian Optimisation employs a 
Bayesian statistical model, typically based on Gaussian process 
regression, to predict the behaviour of a complex black box 
function using all available evaluated data points. Gaussian 
process regression utilises the evaluated data points to fit a 
multivariate Gaussian distribution, which can then be used to 
predict the function's values across the entire space [10]. This 
predicted distribution is then used to form the acquisition 
function, that quantifies the likelihood of a given point being 
the quality optimum within the search space [6]. It combines 
the predicted values and uncertainties from the Bayesian 
statistical model, with higher expected values and higher 
uncertainties suggesting regions that are potentially better than 
the current optima. Next, the maximum of the acquisition 
function needs to be located to give the point which has the 
highest expected improvement over the current optima. Now 
the point with the highest expected improvement can be 
evaluated. This allows for the Bayesian statistical model to be 
updated with the new information, so the new point with the 
highest expected improvement can be found. This process is 
repeated until a stopping criterion is met. This produces a model 
that always attempts to evaluate the point next with the highest 
expected improvement of the current optimum.   

C. Bayesian Optimisation with a Gaussian process 
regression, and the Curse of Dimensionality 

Unfortunately, Bayesian optimisation is highly affected by 
the curse of dimensionality, rendering it ineffective above 
approximately twenty dimensions [6]. One of the challenges 
with Bayesian optimisation is in modelling of predicted values 
for the black box function across the entire search space [9]. 
Modelling the entire search space becomes massively more 
challenging as the dimensionality of the problem increases, 
requiring a far more complex model to be used. Moreover, 
Gaussian process regression, commonly used in this process, 
relies on distances to nearby data points for predicting the black 
box function. However, information regarding distance to 
nearby data points degrades significantly at higher 
dimensionality [9]. This is because distances between data 
points become relatively larger and more similar as 
dimensionality increases, making it more challenging to extract 
meaningful information about these distances.  

These challenges of the curse of dimensionality are notably a 
prominent when optimising the acquisition function [9]. Firstly, 
due to the sparsity of the data points used to construct the 
acquisition function, and the increase in similarity of distance 
between them, the acquisition function becomes increasingly 
less accurate at higher dimensionality. As a result, significant 
proportions of the acquisition function become flat plains of 
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uniform value, making optimisation of it challenging with 
traditional techniques like DIRECT and gradient descent [5]. 
Additionally, since the acquisition function incorporates 
uncertainty, the large flat regions will have high uncertainty due 
to their high distance from evaluated data points. Consequently, 
maximising the acquisition function will often result in 
selecting points in the furthest regions of the search space, as 
they exhibit the highest uncertainty [9]. This promotes a blind 
search of far regions of the search space rather than converging 
towards an optimum.  

In summary, the curse of dimensionality has a significant 
impact on multiple steps in Bayesian optimisation [5]. 
Consequently, it is crucial to employ techniques to address 
these challenges if Bayesian optimisation is to remain 
applicable at high dimensionality. Fortunately, there are 
approaches available to alleviate these issues. One such 
approach is dimensionality reduction, for example selecting the 
most influential dimensions for optimisation or embedding the 
high-dimensional space into a lower-dimensional one [9]. Even 
more advanced techniques taking advantage of ideas such as 
low dimensional feature spaces and sparse axis-aligned 
subspaces, also focused on reducing the dimensions of the 
problem [5], [11]. These techniques make assumptions about 
the data, allowing for a reduction in dimensionality and 
mitigating the effects of the curse of dimensionality. It is 
important to note that these dimensionality reduction 
techniques are applicable to various optimisation techniques, as 
they do not specifically target the shortcomings of Bayesian 
optimisation. 

D. CMA-ES 

A more resent technique that has proven successful in 
performing high dimensional optimisation is Covariance 
Matrix Adaptation Evolutionary Strategy (CMA-ES) [7]. 
CMA-ES has been successfully applied in various fields, 
including neural networks, thermo-mechanical processing, 
neural topologies, molecular alignment, and many others [12]. 
CMA-ES achieves this by maintaining a probability distribution 
that models the likelihood of a point being the global optimum. 
It performs this using a multivariate Gaussian distribution. The 
distribution is represented as: 

𝑚 + 𝜎𝑁(0, 𝐶)                                    (1) 
In this equation, m represents the mean of the Gaussian 

distribution, which indicates the point currently considered 
most likely to be the global optimum. σ is the step size 
parameter that affects the spread or proximity of the distribution 
around the mean [7]. C represents the covariance matrix of the 
distribution, which contains the predicted variances and 
covariances between dimensions. 

At each step of the CMA-ES algorithm, a small selection of 
points is sampled from the distribution and evaluated [7]. This 
evaluation allows for the update of m, σ and C using the newly 
sampled points. Firstly, to update these values, the new points 
are ranked based on their evaluated values. Next each point 
receives a weight in accordance with their rank position, with 
higher weights being given to points with better evaluations. 

Next, m is updated to the weighted average of the new data 
points. This update functionally shifts the mean, and thus the 
whole distribution, towards the new highest ranked points to 
facilitate exploration towards potentially better solutions. 
Covariance matrix C is updated by comparing the weighted data 
points to m and produces a new covariance matrix specific for 
the new data points. This new covariance matrix is then 
combined with C with linear combination to obtain the updated 
value of C. This allows the covariance matrix C to capture the 
directions around the mean m that exhibit the most variance in 
high-quality evaluated data points. 

CMA-ES also incorporates the concept of momentum in the 
covariance update. Moreover, the step size parameter σ is 
updated based on the observed movement of the mean m. This 
means if the mean m is constantly moving a significant amount 
in a specific direction, the step size will increase to exploit this 
trend to find the optima more efficiently. Conversely, if the 
mean is not moving constantly in a specific direction, the step 
size will be decreased to focus on exploration around the 
vicinity of the mean’s current location. 

Overall, this allows CMA-ES to estimate potential locations 
of the global optima using only a multivariate Gaussian 
distribution as a model [7]. Additionally, CMA-ES can use 
small sets of evaluated points to adapt this representation during 
the optimisation process to converge towards the optimum. 

E. CMA-ES and the Curse of Dimensionality 
CMA-ES has shown success at in high dimensionality 

problems as it is less affected by the curse of dimensionality 
than Bayesian optimisation. Firstly, it does not aim to model the 
entire search space, instead estimating the location of the global 
optima using only a multivariate Gaussian distribution. This 
means CMA-ES uses a simple distribution that still allows for 
stability, and finite predictions of the variances in the data. 
Additionally, this allows CMA-ES to make minimal 
assumptions about the data, avoiding making assumptions 
about independence or relationships, instead learning them as it 
goes. This allows CMA-ES to avoid overly complex models, 
such as the acquisition function required in Bayesian 
optimisation. Moreover, CMA-ES circumvents directly 
comparing lengths, which can pose challenges at high-
dimensionality [8]. Instead, it employs processes such as 
ranking points along with measuring their mean, variance, and 
covariance, which are far less susceptible to the adverse effect 
of the curse of dimensionality. 

Unfortunately, CMA-ES is not immune to the challenges 
imposed by the curse of dimensionality [13]. Firstly, it is 
affected by the inherent challenge of increasingly large search 
spaces. In addition, CMA-ES needs to learn the n×n covariance 
matrix for a problem with n dimensions [14]. This is a 
substantial (n2 + n)/2 parameters that need to be learnt, which 
equates to 500500 parameters for a 1000-dimensional problem. 
This means massive quantities of data are required to learn these 
many parameters. This abundance of parameters to learn 
becomes significant hindrance holding back CMA-ES at 
hundreds of dimensions. 

One solution to the large number of parameters in CMA-ES 



4 
ENGR 489 (ENGINEERING PROJECT) 2023 
 

is proposed by SEP-CMA-ES [14]. This approach suggests not 
learning covariances, instead focusing only on learning 
variances, thereby reducing the parameters to learn down to n 
for a n-dimensional problem. This reduction in parameters can 
help mitigate the impact of the curse of dimensionality [13]. 
However, this simplification assumes that all variables are 
independent, which may lead to significant degradation of 
performance when optimising non-separable functions. Since 
most real world high-dimensional optimisation problems are 
non-separable functions, the applications of this solution are 
limited [14]. 

Additionally, the simplification to a Gaussian distribution 
does come with limitations. One such limitation is that CMA-
ES primarily focuses on convergence towards a single point, 
specifically the mean of its distribution. This removes its ability 
to switch to an entirely new point if exploitation of the current 
point has led to an optimum. In contrast, other optimisation 
techniques like Bayesian optimisation can perform this switch 
back to exploration when the expected improvement of the 
currently explored optimum becomes low. This ability to switch 
back to exploration is important for exploring the entirety of the 
search space and to remaining catch in a local optimum. But 
CMA-ES is instead must restart the learning process after it 
converges to an optimum if it wishes to see further 
improvement, disregarding a significant amount of information 
about evaluated points in the process. This limitation ultimately 
decreases the quality of CMA-ES in terms of exploration 
adaptability. 

F. Recent CMA-ES Techniques 
New techniques aimed at improving CMA-ES are 

continuously being proposed, one of which involves using a 
mixture model [15].  In this approach, the traditional Gaussian 
distribution in CMA-ES is replaced with a collection of small 
mutation vectors. These mutation vectors together form a 
mixture model that approximates a Gaussian distribution. This 
reduces the number of parameters that CMA-ES is required to 
learn to be reduced by leveraging the simplicity of the small 
mutation vectors. This helps mitigate the need to learn an entire 
covariance matrix, reducing what the algorithm is required to 
learn.  

Another promising technique is combining CMA-ES with 
Monte Carlo Tree Search, a technique with application in 
complex optimisation problems [16]. This technique entails 
decomposing CMA-ES into a tree structure, where each node 
represents a region of space with its own mean and covariance 
derived from its children. By utilising this tree structure, CMA-
ES can effectively search multiple promising regions of space 
simultaneously as the tree decomposes the space down into 
promising subregions. Importantly, since the nodes are 
constructed from their children, this technique does not require 
significantly more parameters to be learned compared to 
standard CMA-ES. The success of this technique demonstrates 
the potential benefits of searching multiple means within CMA-
ES. 

III. DESIGN 

A. Decision CMA-ES 

When a run of CMA-ES stops finding better optima, 
indicating convergence to a local optimum, in the usual 
approach it restarts, and an alternative solution is sought. An 
alternative to this iterative technique involves parallelising 
individual searches. In this parallel approach, multiple CMA-
ES searches start from the first generation, and in each 
successive generation, one CMA-ES algorithm is selected to 
advance by a generation. The simplest implementation of this 
parallel algorithm advances all searches uniformly, lacking 
interaction between them. However, under these conditions, if 
a predetermined number of searches are executed, the result 
remains the same as in the iterative approach. In this scenario, 
the predetermined number of searches is performed without 
interaction among them, resulting in the same outcomes. 

In the parallel approach, there is flexibility in selecting which 
search to advance in each generation as they do not need to be 
advanced uniformly. This presents an opportunity to 
incorporate the Bayesian principle of expected improvement 
into CMA-ES. Expected improvement can guide the selection 
of which search to advance in the next generation based on its 
current performance, producing a decision CMA-ES algorithm. 
This allows the best-performing search to be favoured for 
advancement. Then as a search converges to a local optimum 
and its performance stagnates, its expected improvement 
diminishes and should be selected less for advancement. This 
will then allow for the opportunity of another search to be 
advanced which have not yet converged to an optimum to be 
selected. This produces a dynamic system where the search 
with the highest expected improvement is advanced each 
generation.

 
Fig. 1. The process of predicting the convergence curve of a 

minimisation problem. 
 
To calculate the expected improvement for each individual 

search in this context, a crucial shift from the Bayesian 
optimisation paradigm is required. In Bayesian optimization, 
expected improvement is typically computed using a prediction 
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of the objective function being optimized. However, in our 
case, we are predicting the convergence curve itself, as 
demonstrated in Fig. 1. 

This shift in focus means the objective differs from Bayesian 
Optimisation, where the primary aim is to identify the 
maximum of an acquisition function. In our context, the goal is 
to choose the predicted convergence curve that has the best 
expected improvement. This selection process involves 
pinpointing a specific point within the predicted convergence 
curves to assess and determine which one demonstrates the 
most significant expected improvement. 

If we consider the expected improvement of advancing just 
one generation, the algorithm will invariably favour the search 
with the best optima observed so far. This is because, in the 
immediate next generation, the predicted convergence curve for 
the search with the best optima is likely to be the lowest. 
However, when looking ahead by more than one generation, 
searches that predict greater improvements, even if their current 
optima are suboptimal, will be favoured. This effect can be seen 
in fig. 1. 

To strike a balance between exploring poorly explored 
regions and exploiting areas with known quality optima, we 
must look ahead by an appropriate number of generations. This 
concept appears in other optimization algorithms, which often 
start by favouring exploration and gradually shift toward 
exploitation as they progress [17]. It would then logically 
follow that decision CMA-ES would benefit from dynamically 
adjusting how many generations ahead is based on the known 
quantity of points that can be evaluated. When the algorithm is 
expected to run for many generations, considering several 
generations ahead is appropriate. Conversely, when the 
algorithm has only a few more generations to run, a more 
immediate comparison of expected improvements is warranted. 

In Bayesian optimization, Gaussian Processes are typically 
employed to model and predict the solution space, enabling the 
computation of expected improvement. In this context, these 
techniques can predict the convergence curve. However, a 
challenge arises when using Gaussian processes in this manner, 
because the function produced converges to a preset value when 
far the observed values in the convergence curve. While this 
value is traditionally set to the mean of the observed values, this 
assumption is incorrect, as convergence curves do not converge 
toward their own average. Instead, they tend to converge to a 
value equal to or lower than their current value. To account for 
this, the preset value would need to be set lower than the current 
optima for the search, becoming the assumed asymptotic 
convergence point. This, however, would require predicting 
what the convergence curve converges to through another 
method, potentially introducing inaccurate assumptions. 
Furthermore, when considering a sufficiently large number of 
generations ahead, all searches are assumed to converge toward 
their respective assumed convergence point. In such a scenario, 
the potentially incorrect assumed convergence points 
significantly influence the expected improvement calculations. 
For instance, if the same convergence point were selected for 
all searches, then, when predicting far enough ahead, all 

searches would yield nearly identical expected improvements. 
This renders the expected improvement metric essentially 
worthless as a predictor. 

Essentially what is needed is a model capable of producing 
predicted mean and variance values, so that expected 
improvement can be calculated. Other, regression models can 
be employed to predict the convergence curve. The simplest 
approach involves using Bayesian linear regression, but this 
assumes linearity, which may not hold true for convergence 
curves. To mitigate the effects of this assumption, only the most 
recent generations from the convergence curve can be used for 
linear regression, thereby assuming the search’s optima will 
continue to improve at its recent rate. 

Alternatively, other regression models, such as exponential 
decay models, might be used to incorporate behaviour akin to 
that of convergence functions and offer more flexibility 
regarding curve shape. However, these models are more 
complex to fit the linear regression while still making 
significant assumptions about the shape of the convergence 
curve [18]. 

B. Mixture CMA-ES 

In the parallel CMA-ES structure, each search is viewed as an 
isolated process. However, this assumption of isolation likely 
incorrect, as the other searches running in parallel are within the 
same search space and potentially overlap with each other. This 
is notably the case when the algorithm is performing 
exploration of the search space, or multiple searches have 
converged to the same region of the search space. This means 
data from within one search could hold useful information for 
updating other distributions during both exploration and 
exploitation. 

The independent distributions might be view as a single 
amalgamated distribution. Given that the individual 
distributions are Gaussian, this amalgamation creates a 
Gaussian mixture model that encompasses the entire search 
space. This unified distribution facilitates the sampling of data 
points for evaluation, and these evaluated data points can be 
employed to update the entire model as required, as opposed to 
updating just a single Gaussian distribution. 

The updating technique for CMA-ES distributions is specific 
to individual Gaussian distributions within this mixture model. 
Each model should be updated with relevant data from within 
its own distribution, as some data points may lie far outside of 
it and would not be helpful in the updates. For example, if all 
distributions were to consider all data points relevant then all 
the distributions will immediately become identical, as they are 
using the same process to update their means and covariances. 
This immediate convergence of all means together when all 
data is share can be seen in Fig. 2. 
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Fig. 2. Mean’s converging together when data is shared, 

dimensionality has been reduced to 2 dimensions with PCA. 
 
To determine the appropriate data points to update each 

search, we need to establish the responsibility of each 
distribution for each data point, to weight how much each 
distribution should be updated with each data point. 

From a Bayesian perspective, our goal is to calculate the 
posterior probabilities, which represent the updated 
probabilities of each data point's association with the 
distributions after observing the data. This process involves two 
key components: the likelihood and the prior. The likelihood 
measures how well a data point aligns with each distribution 
and is represented by the Probability Density Function (PDF) 
values for each distribution evaluated at the data point. This step 
assesses the compatibility of the data point with each 
distribution. 

In the absence of prior information or prior knowledge about 
the origin of the data point, we adopt a uniform prior, assigning 
equal probability to all distributions before data observation. 
This choice maintains a neutral standpoint and prevents bias in 
favour of any specific distribution. We apply Bayes' theorem to 
combine the likelihood and the prior to determine the posterior 
probabilities in the standard way, as implemented in Gaussian 
mixture models [19]. 

The Bayesian inference process involves updating our initial 
beliefs, represented by the uniform prior, with the information 
obtained from the likelihood, which reflects the observed data. 
To derive meaningful probabilities for each distribution, we 
utilize the softmax function as a normalization step. The 
softmax function transforms the PDF values (indicating 
likelihood) into probabilities (known as responsibilities). 
Crucially, this normalization ensures that the probabilities sum 
to one across all distributions, providing a coherent 
representation of the likelihood that each data point belongs to 
each distribution. 

Unfortunately, this technique is susceptible to a problem from 
the high dimensionality of the input domains to which the 
algorithm is applied. Notably, the probability density of one 
standard deviation away from the mean at a given 
dimensionality can be modelled as follows: 

𝑃 =
ଵ

(ଶగ)
೏
మ

𝑒ି
೏

మ                            [20] (2) 

Where P is the probability density one standard deviation 
from the mean, and d is the number of dimensions. This 
equation exhibits exponential decay, and by the time 200 
dimensions are reached, the probability density at one standard 
deviation is extremely small, about 5.66 × 10-124. These 
minuscule values fall outside the range of floating-point 
precision used by Python, the language in which the algorithm 
is implemented. Moreover, they cannot be used in the softmax 
function because exponentiating such values would demand 
even greater precision. To circumvent this issue, the use of log 
PDF values is preferred. Logarithmic values operate on a more 
stable logarithmic scale, preserving numerical precision while 
maintaining relative relationships between PDF values. 

However, transitioning to the log scale alone is insufficient, 
especially at high dimensionality. For example, the log PDF 
value one standard deviation away from the mean in 200 
dimensions is still log(5.66 × 10^-124), which equals -281. Due 
to the magnitude of these probabilities and the exponential 
nature of the softmax function, small differences in log PDF 
values can lead to significant disparities in the calculated 
responsibilities. As a result, it's highly likely that all 
responsibilities, except for one, will be rounded to 0, making 
data points become unambiguously associated with a particular 
Gaussian. Such responsibility values are not useful for 
effectively distributing data, as each data point will contribute 
to only one Gaussian distribution. Therefore, it becomes 
necessary to scale these probabilities toward 0. A natural way 
to achieve the required softening of probability values is to 
make and adjustment to the softmax as follows: 

𝜎(𝑧)௜ =
௘ഁ೥೔

∑ ௘
ഁ೥ೕ಼

ೕసభ

                                  (3) 

Where σ is the softmax function, z represents the log 
probability density value, K is the number of algorithms, and β 
is the base used in the calculations. β must be within the range 
of 0 ≤ β ≤ 1 to scale the probabilities effectively. Decreasing the 
value of β concentrates probability distributions around the 
positions with the smallest input values. Setting β to 1 maintains 
the same softmax function as before, which is unlikely to yield 
useful responsibilities. Setting β to 0 results in equal usage of 
data by all distributions, causing full information sharing and 
the convergence of all CMA-ES searches after one generation. 
Determining an appropriate β value is essential to balance data 
sharing in the softmax equation. This introduces an additional 
hyperparameter into the multi-CMA-ES algorithm, and 
dynamically setting this hyperparameter poses significant 
challenges. These challenges stem from the remarkable 
differences in PDF values produced by different problems and 
dimensionalities, which must be appropriately reduced to 
achieve correct data sharing tailored to each specific problem. 

Another possible approach to determine responsibility, like 
how CMA-ES assigns weights to higher fitness points, involves 
adopting a ranking-based system. In this method, each data 
point is assigned a responsibility value based on its rank within 
the distribution. The point with the highest probability density 
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receives the highest weight, and this ranking-based approach is 
followed in descending order for the remaining points. This 
means that the magnitude of the probability values would not 
be considered; rather, it focuses on whether values are higher or 
lower than each other. Consequently, it eliminates the need for 
a scaling parameter like β. 

However, this technique comes at a cost – it results in the loss 
of information about the actual magnitude of probability 
density values between different points. For instance, two 
points may have significantly different probability density 
values, but if there are probability density values between them, 
they will be assigned similar ranks and, consequently, similar 
responsibilities. This loss could have a detrimental impact on 
the calculation of accurate responsibilities. In this ranking-
based system, points may be incorrectly assigned large or small 
responsibilities solely based on the quantity of points with 
higher or lower probability densities than themselves. 

Now that the responsibilities have been found; they can be 
used to dictate what data is to be used to update each search. 
Fortunately, CMA-ES already incorporates point weighting 
based on fitness, so we can apply additional weighting to each 
point based on responsibilities directly. This can be done as: 

𝑤∗
௜ =

௪೔∙௣೔

∑ ௪ೕ∙௣ೕ
ಿ
ೕసభ

                                   (4) 

Using the original fitness-based weight values of w, and the 
responsibility values of p, the new weight values w*, can be 
found for point i, for the N different data points. This allows 
each CMA-ES search favour point that when its own 
distribution when updating its distribution. 

C. Testing Environment 

To facilitate the proper evaluation of the designed algorithms, 
a testing environment required establishment. The testing 
environment must allow for many existing and designed 
algorithms to be run on a variety of toy problems to see which 
preforms better and to highlight intricacies of how the algorithm 
works. More specifically this includes visualisations of how the 
different convergence curves compare across multiple runs, and 
how the one or more Gaussian distributions are changed over 
time. It must also document computation times of the 
algorithms to ensure they maintain computational feasibility. 

IV. IMPLEMENTATION 

A. Testing Environment 

The programming language for the testing environment is 
exclusively python [21]. It has been selected as it is the standard 
programming language used in machine learning tasks, such as 
this project, thus has the best libraries and other tools available 
for utilisation within this project. Such libraries that will be used 
extensively include NumPy, scikit-learn, pandas and 
matplotlib, as they are standard libraries for use in machine 
learning tasks. Much of the results are presented in Jupyter 
Notebooks [22]. Jupyter Notebooks are an ideal platform for 
enhancing data visualisation and results presentation in the 
testing environment due to their interactive and versatile nature, 
facilitating the seamless integration of code, visualisations, and 

explanatory text in a single document. 
The testing environment itself will heavily utilise the pymoo 

library [23]. Pymoo was selected as it is a library designed for 
performing black box optimisation tasks such as those within 
the project. This means it can be used as the basis for the testing 
environment, removing the requirement to create code for 
executing newly created algorithms, as well as large quantities 
of pre implemented optimisation algorithms and problems that 
are invaluable for evaluation of the new algorithms. 

The evaluation of implemented algorithms requires test 
problems that replicate the high-dimensional, multi-optima 
structure found in the black-box functions these algorithms are 
designed to optimise. These test problems should also have the 
advantage of being computationally inexpensive to evaluate, 
ensuring efficient testing. To meet these criteria, the Schwefel, 
Rastrigin, Ackley, and Griewank functions have been selected 
[24]. They offer a diversity of problems with many optima and 
can be scaled to higher dimensions. 

B. Ensuring Fair Testing 

The testing environment must prioritize fairness in its 
comparisons to enable meaningful conclusions to be drawn 
from the results. Firstly, all convergence curves will be 
generated from many runs of the algorithm being tested to 
ensure that the performance is accurately represented, and 
robustness is assessed across multiple runs. Furthermore, the 
quantity of evaluated points as the common x-axis for all 
performance comparisons. This approach aligns with the 
primary objective of high-dimensionality optimization 
algorithms, which is to minimize the number of evaluated 
points, a critical and costly step, thereby ensuring meaningful 
comparisons among algorithms. 

Additionally, all algorithms use an identical implementation 
of CMA-ES that is based on the techniques presented in [7]. 
Additionally, all initial populations are generated with Latin 
Hypercube Sampling, and simple and effective way of 
generating diverse samples a high dimensionality [25]. To 
further ensure the CMA-ES searches are the same, identical 
hyperparameters used in all, see Table I for details the values. 
Table I 

Hyperparameters used by all CMA-ES algorithms. 
Hyperparameter Set value 
μ/λ Populations size 200 
Initial σ value, Starting 
standard deviation of 
sampled points 

Problem Range 

Cσ Decay rate for the 
cumulation path for the 
step-size control 

0.047 

cc Decay rate for 
cumulation path for the 
rank-one update of the 
covariance matrix 
 

0.17 

c1 Learning rate for the 
rank-one update of the 

0.096 
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covariance matrix update 
cμ Learning rate for the 
rank-μ update of the 
covariance matrix update 

0.082 

dσ Damping parameter for 
step-size update 

9.27 

 
The selected hyperparameter show in Table I allow for the are 

suitable to effectively preform optimisation on the problems 
used in the evolution of the algorithms. 

C. Ensuring Fair Testing in Decision CMA-ES 

For the evaluation the algorithms that uses expected 
improvement to select CMA-ES to advance next, a few 
additional things need to be ensured to make the tests are fair. 
Notably evaluations will be based on comparison to basic 
iterative and parallel CMA-ES algorithm shown in Fig. 3. This 
means that the evaluation will be able to conclude if using 
expected improvement offers significant improvement when 
running CMA-ES in parallel. Furthermore, it will allow for the 
evaluation of if the changes are enough to out preform the 
standard iterative approach. 

These tests will need to be run for enough evaluate points so 
that at least three interactive CMA-ES searches can converge to 
an optimum so that full effects of running the CMA-ES 
Searches multiple times can be observed.  

D. Ensuring Fair Testing in Mixture CMA-ES 

The goal of the Mixture CMA-ES algorithm is to assess if 
running training multiple searches with the same data pools an 
improvement only a running a single CMA-ES algorithm. As 
such performance comparisons should be made to a standard 
implementation of CMA-ES. 

 

E. Algorithm Implementation Details 

The Decision CMA-ES implementation relies on Bayesian 
linear regression for expected improvement calculations. This 
was chosen for its simplicity to avoid overly complex 
computations and minimize the number of assumptions 
required, as discussed. 

In the case of Mixture CMA-ES, the implementation employs 
the softmax function on log probability density values, ensuring 
accurate calculation of responsibility values. The only 
assumption in this approach is the selection of a β value for 
scaling responsibilities. A specific β value of 5.62×10-5 has 
been consistently chosen for all tests. This selection ensures that 
Mixture CMA-ES can be applied effectively to a range of 
problems without the responsibility values losing their 
meaningful information, as discussed. 

V. EVALUATION 

A. Decision CMA-ES 

Before the Decision CMA-ES algorithm can be evaluated, 
first the simple parallel algorithm and iterative algorithms used 
as benchmarks need to be investigated.  

 
Fig. 3, Running three CMA-ES searches parallelly and 

iteratively. 
 
Fig. 3 shows running CMA-ES searches in parallel does not 

provide significant advantages when compared to running them 
iteratively. The same quality minima are achieved only after 
100,000 evaluated points, because the mean and confidence 
interval of the two algorithms become the same at that point. 
Unfortunately, a notably worse results occur at fewer than 
40,000 evaluated points were the confidence interval for 
parallel CMA-ES is fully above iterative. So, Running the basic 
CMA-ES search in parallel, while not leading to noticeable 
improvements, maintains a consistent outcome, albeit with a 
slightly slower convergence rate. 

But is the parallel CMA-ES is expanded to use the expected 
improvement by implementing the decision CMA-ES 
algorithm. If the expected improvement in incorporated into the 
algorithm’s performance notable changes. 

Parallel CMA-ES vs Decision CMA-ES 
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Fig. 4. Convergence of basic Parallel CMA-ES compared to 

Decision CMA-ES in 100 dimensions across 10 runs on the 
Schwefel problem. 

 
Fig. 4 illustrates that during the initial phase of the algorithm's 

execution, Decision CMA-ES consistently identifies lower 
optima than the basic Parallel CMA-ES alternative. This 
difference becomes particularly evident between 20,000 and 
40,000 evaluated points, as the confidence intervals of the two 
algorithms do not overlap in this region. This suggests that 
Decision CMA-ES exhibits a clear advantage in performance 
during the early stages of the optimization process. 

However, beyond 40,000 evaluated points, an interesting shift 
occurs. The confidence intervals begin to overlap, and by the 
time 60,000 evaluated points is reached, the means of both 
algorithms fall within each other's 95% confidence intervals. 
This indicates that, in the latter half of the algorithm's 
execution, Decision CMA-ES, on average, continues to 
perform better than Basic Parallel CMA-ES but not to a 
statistically significant extent. 

If the dimensionality of the problem is scaled from 100 to 200 
dimensions, the result remains remarkably similar. 

 
 
Fig. 5. Convergence of basic Parallel CMA-ES compared to 

Decision CMA-ES in 200 dimensions across 10 runs on the 
Schwefel problem. 

 
In Fig. 5, it becomes evident that even when the 

dimensionality of the problem is significantly increased, 
Decision CMA-ES outperforms Parallel CMA-ES 
significantly. However, after all distributions begin to converge 
to a local optimum, the difference between the two algorithms 
shrinks, with only a slight favour towards Decision CMA-ES. 
This behaviour is notably consistent with what was observed in 
the 100-dimensional case, highlighting that dimensionality has 
a limited impact on the differences between these algorithms. 

If the Decision CMA-ES algorithm can be additionally 
applied to other problems to see how it performs on problems 
significantly different to the Schwefel problem. 

 
Fig. 6. Convergence of basic Parallel CMA-ES compared to 

Decision CMA-ES in 100 dimensions across 10 runs on the 
Rastrigin Problem. 
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As shown in Fig. 6, the Decision CMA-ES algorithm 

consistently outperforms the basic parallel alternative on the 
Rastrigin problem for the first 60,000 evaluated points. 
However, as the number of data points increases, the 
performance of the two algorithms becomes more similar, with 
Decision CMA-ES maintaining a slight edge in terms of 
average performance but not to a statistically significant extent. 
This observation highlights that the Decision CMA-ES 
algorithm is not overly problem-specific and can be applied to 
a broader range of optimization problems. 

The slight improvements seen in the performance of Decision 
CMA-ES can be attributed to its expected improvement 
decision process as it is the only different between these 
algorithms. This decision process can be visualised to illustrate 
what sets Decision CMA-ES apart. 

Convergence of Decision CMA-ES algorithm: 

 
Fig. 7. The convergence of the three searches within one run 

of Decision CMA-ES shown in respects to number of evaluated 
points with the search. 

 
As depicted in Fig. 7, there is an uneven distribution of 

evaluated points among the three searches. Search 0 has 
received over 40,000 of the total 100,000 evaluated points, 
while Search 2 has only received fewer than 30,000. Notably, 
Search 0 converged to the lowest value and had the most 
evaluated points, while Search 2 converged to the highest value 
and had the fewest evaluated points. This observation 
underscores the fact that the searches converging to lower and 
more optimal minima have more points evaluated within them. 
This behaviour is to be expected when following expected 
improvement as having better optima yields a greater expected 
improvement. 

Convergence of Decision CMA-ES algorithm: 

 
Fig. 8. The convergence of the three searches within one run 

of Decision CMA-ES in respect to the total number of evaluated 
points, instead of just points within its own search. Darker 
regions represent point being evaluated with the given 
distribution. 

 
When the data shown in Fig. 7 is transformed to display the 

convergence of each search concerning the total evaluated 
points, as shown in Fig. 8, a different pattern emerges. In Fig. 
8, it becomes evident that search 1 is favoured early in the 
process, indicated by its darker curve (show it has a higher 
number of evaluated points), causing it to exhibit the lowest 
minimum until about 40,000 points. 

The preference for evaluating points in search 1 in early 
generation can be attributed to its achievement of the lowest 
minimum after evaluating 5,000 data points per search, as 
demonstrated in Fig. 7. In Fig. 8, after 40,000 total evaluated 
points, searches 0 and 2 start to be favoured, as indicated by 
their darkening lines and their minima catching up to that of 
search 1. However, after 90,000 evaluated points, only search 0 
is favoured, leading it to have the highest number of evaluated 
points, as shown in Fig. 7. 

This behaviour is also closely linked to the expected 
improvement criterion. Early on, search 1 had the highest 
expected improvement since it showed the most improvement. 
As it began to converge to a local optimum, searches 0 and 2 
displayed higher expected improvements so explored more. 
Finally, all searches had converged to local optima and search 
0 was favoured as it possessed the highest expected 
improvement. 

The computational time taken for both algorithms also 
requires consideration. 
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Fig. 9. Average computational time on Parallel and Decision 

CMA-ES with 100,000 evaluated points  
 
As shown in Fig. 9, Decision CMA-ES consistently takes 

slightly more computational time than Parallel CMA-ES. This 
outcome is expected because both algorithms evaluate the same 
number of points and perform the same number of searches. 
However, Decision CMA-ES involves an additional step of 
calculating expected improvement in every generation, which 
demands slightly more computation. This additional 
computation step appears to take approximately one second for 
all problems. The small increase in computation time, which 
seems to be minimally affected by dimensionality, does not 
impose a significant computational cost. Therefore, Decision 
CMA-ES remains as computationally efficient as its basic 
parallel counterpart. 

In conclusion, it is evident that while parallel CMA-ES may 
not yield performance improvements over the iterative 
approach, by the end of the algorithm's execution, they 
converge to similar results within the same number of 
evaluations. However, Decision CMA-ES demonstrates a 
noteworthy improvement over parallel CMA-ES during the 
early generations and maintains a slight advantage in the later 
stages, all without incurring a substantial increase in 
computational cost. As such, Decision CMA-ES shows promise 
in enhancing the performance of CMA-ES searches, especially 
when enough points are evaluated. 

B. Mixture CMA-ES 

If Mixture CMA-ES is taken and compared to a standard 
implementation of CMA-ES, we can assess how well it 
performs. 

 
Fig. 10. Convergence of standard CMA-ES compared to 

Mixture CMA-ES with 20 Gaussian Distributions in 100 
dimensions across 10 runs on the Schwefel problem. 

 
As shown in Fig. 10, mixture CMA-ES significantly 

outperforms a standard implementation of CMA-ES, with the 
confidence interval not overlapping past 13,000 evaluated 
points and consistently finding lower minima. This highlights 
that despite being required to learn additional distributions, it 
can converge at a similar rate to standard CMA-ES in the early 
generations. This suggests that Mixture CMA-ES offers 
significant improvements over standard CMA-ES on the 100-
dimensional Schwefel problem. 

Unfortunately, the same success does not appear in all 
problems. 

 

  
Fig. 11. Convergence of standard CMA-ES compared to 

Mixture CMA-ES with 20 Gaussian Distributions in 100 
dimensions across 10 runs on the Rastrigin problem. 

 
As shown in Fig. 11, Mixture CMA-ES is no able to out 
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preform Standard CMA-ES on the Rastrigin problem, with both 
algorithms appearing to find similar optima at all points, show 
by their confidence intervals normally overlapping partially, or 
even fully. Notably, after 30,000 evaluated points mixture 
CMA-ES is, on average, finding slightly higher minima. This 
all makes it apparent that Mixture CMA-ES is not able to offer 
significant improvements to standard CMA-ES on the 100-
dimentional Rastrigin Problem. 

The computational time taken for both algorithms also 
requires consideration. 

 
Fig. 12. Average computational time on standard and Mixture 

(20 searches) CMA-ES, with 30,000 evaluated points. 
 
As depicted in Fig. 12, updating the Gaussian mixture model 

in the Mixture CMA-ES algorithm imposes significantly higher 
computational demands. Notably, this process takes 
approximately 9 times longer in 100 dimensions and 14 times 
longer in 200 dimensions compared to the standard CMA-ES 
algorithm. The increased computational requirements are 
expected due to the need to update a more complex model. 
However, it's important to note that these requirements do not 
render Mixture CMA-ES computationally infeasible. The 
algorithm remains executable, with Mixture CMA-ES 
completing 30,000 evaluations in under 4 minutes even in 200 
dimensions. Moreover, when compared to the overall cost 
associated with evaluating such many points, this additional 
time requirement is likely insignificant. 

In summary, the Mixture CMA-ES algorithm can achieve 
better optima within the same number of evaluated data points 
as the standard CMA-ES on select problem. It accomplishes 
this improvement without sacrificing performance on other 
problems or becoming computationally infeasible. Therefore, 
Mixture CMA-ES appears to offer a significant enhancement 
over the standard CMA-ES for the tested problems. 

VI. FUTURE RESEARCH 

A. Combining Algorithm 

Both the Decision and Mixture CMA-ES algorithms 
introduce modifications to different aspects of a basic parallel 
CMA-ES algorithm. The first aspect determines which search 
should be favoured, while the second governs how information 
is shared among searches. Importantly, these two techniques 
can be integrated into a single algorithm. This integration 
involves applying the distribution favouring mechanism of 
decision CMA-ES to the Gaussian Mixture model of multi-
CMA-ES. As a result, Gaussians from searches with higher 
expected improvements are more likely to be sampled from 
within the mixture model. This will be increasing their 
representation in the sampling process, allow higher expected 
improvement searches to be favoured. However, it's important 
to note that the expected improvement calculation needs 
adjustments, as points are not explicitly assigned to a 
distribution but rather have responsibilities towards each 
distribution. Furthermore, the initial assumption that a data 
point is equally likely to be sampled from all distributions must 
be refined to accommodate the preference given to select 
distributions. 

B. Dynamic Number of Distributions 

In the algorithms implemented, all CMA-ES searches were 
initialized at the beginning of the search process. However, 
initializing all searches at the start necessitates determining the 
number of searches to be used before running the algorithm. 
Ideally, you'd want to initialize enough searches to explore 
various promising regions, but not so many that the algorithm 
struggles to converge to a good solution within the available 
point evaluations. Unfortunately, without sufficient knowledge 
of the problem and the number of point evaluations required for 
CMA-ES to converge, determining the appropriate number of 
searches can be challenging. 

The parallel CMA-ES structure does present a solution to this 
challenge, and it doesn't require all searches to be present from 
the beginning of the algorithm. This means that if deemed 
necessary, new searches can be initialised during algorithm 
execution and added to the collection of parallel searches. In the 
decision CMA-ES, this could entail initialising a new search 
once the expected improvement of all current searches becomes 
too low. This change functionally allowing the algorithm to run 
indefinitely without getting stuck indefinably in local optima, 
as new searches can be initialised as required. In the Mixture 
CMA-ES algorithm, there's potential for a more advanced 
process where, if it's deemed that there are insufficient Gaussian 
distributions to produce a Gaussian mixture model that 
sufficiently captures the search space, more searches can be 
initialized to address this. Additionally, if there are more 
Gaussians than required as they largely or fully overlap with 
each other, searches could be removed to optimise the 
representation of the search space. 

C. Automatic setting of β parameter from Mixture CMA-ES 

The β parameter use in Mixture CMA-ES is, as discussed, is 
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a challenging parameter to set before executing of the 
algorithm. As such it would be best to adjust the responsibility 
calculations to avoid the requirement to scaling of the log 
probability density with a β value, or to find a way to 
dynamically set it. To preform task, further research into what 
responsibility values promote desire search patterns in a 
Gaussian mixture model. Once this insight in gained, the 
responsibility calculations need to be adjusted to produce these 
ideal responsibilities more consistently, without a preset β 
parameter. 
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