
1
ENGR 489 (ENGINEERING PROJECT) 2023

Ethan Maxwell



Discovering input parameters that yield optimal outputs from
black-box functions poses a challenge in various domains,
including machine learning and robotics applications. These
challenges stem from the complex relationships among input
parameters and between inputs and outputs, relationships that are
unknown to the search algorithm. This means conventional
mathematical techniques like gradient descent and differentiation
are inapplicable, instead necessitating a systematic trial-and-error
exploration of inputs. Numerous algorithms have been developed
to address this issue; however, their performance falls significantly
short of perfection. Recognising the potential for improvement, the
objective of this project has been to design, implement, and
evaluate novel algorithms aimed at addressing limitations within
existing ones and surpassing their performance. This evaluation
necessitated the creation of a testing environment to facilitate
robust comparisons between different algorithms. Emphasis has
been placed on stochastic methods that harness probability
distributions to guide the exploration of potential optimal inputs.
Within this scope, CMA-ES and Bayesian Optimisation have both
demonstrated success through different techniques, but they also
exhibit significant shortcomings. As such, the project explores
concepts that leverage the successful aspects of both algorithms to
address their flaws and enhance performance. The research has
produced two innovative enhancements to these existing
algorithms and demonstrates their potential to surpass current
performance.

I. INTRODUCTION

inding which values to input into a complex continuous
black box function to yield the global optimum of the
function is an important task in various fields,

including machine learning and robotic applications [1], [2].
However, since these functions are often derived from complex
problems they lack a clear underlying formula, instead having
an ill-conditioned and rugged output space [3]. Traditional
mathematical techniques such as differentiation and regression
are unable to directly optimise these functions due to this
complexity [4]. Therefore, an alternative methodology is
required to search the space of all potential solutions through
trial and error in which points are selected and evaluated to find
the global optima [5]. Searching such a complex space through
trial and error is a challenging task, which is greatly exacerbated
by the curse of dimensionality [4]. The curse of dimensionality
means that as the dimension of the problem increases, the
solution space expands exponentially, making it increasingly

This project was supervised by Marcus Frean (primary) and Andrew Lensen.

more difficult to search. Additionally, the computational cost of
evaluating a single potential point in these complex functions
can be prohibitively high, making an exhaustive search
impractical [6]. Hence, an algorithm is required that is capable
of effectively searching the large, rugged, and ill conditioned
solution space for the global optimum, while minimising the
number of point evaluations needed.

A. Motivation

Numerous algorithms have been developed to tackle the
challenges of high-dimensional black box optimisation. These
algorithms employ various techniques, such as stochastic
evolutionary methods, derivative free optimisation, and others
[3]. However, given the complexity of this problem and the
objective of minimising the number of points evaluated, it is
challenging to make highly effective algorithms. This leaves
significant room for further improvement over existing
algorithms. Therefore, the goal of this project is to explore
novel ideas for algorithms that can more effectively address the
challenges of high-dimensional optimisation. The ultimate
objective is to design and implement a new algorithm that
surpasses existing approaches in terms of efficiency and
effectiveness, contributing to advancements in the field of high-
dimensional optimisation algorithms.

Given the multitude of diverse existing approaches to high-
dimensional optimisation, the scope of this project becomes
broad. This makes it necessary to impose a restriction upon
potential new algorithms to establish a clearer research
direction. This restriction will be that stochastic methods that
utilise probability distributions will be the only algorithms
explored in this project. The probability distributions will
model predictions of which regions of the solution space are
most promising to explore next. This direction includes existing
algorithms such as Bayesian optimisation and CMA-ES, which
select points for evaluation based on a probabilistic model that
predicts lucrative regions of space [6], [7]. The success of these
functions at optimisation black box functions highlights how
the use of probability distributions can be an effective solution
to such problems. So, the algorithms explored within this
project utilise a probabilistic model for selecting points to
evaluate next, adhering to the defined scope restrictions.

B. Solution

To develop a new algorithm for effective high-dimensional
optimization, it was essential to first understand existing
algorithms and their approaches to address the challenges at
hand. Then, using the concepts learned, new ideas could be

Better, Faster Optimisation

F

2
ENGR 489 (ENGINEERING PROJECT) 2023

created that had the potential to optimize more efficiently.
Building upon this knowledge allowed partially or entirely new
algorithms to be designed and implemented. These new
algorithms could then be evaluated in comparison to existing
ones to see if they offered significant improvement.

The algorithms developed in this project draw significant
inspiration from both Bayesian Optimization and CMA-ES.
Specifically, this project explores concepts that blend the
strengths of both algorithms, combining them in a synergistic
way to leverage their successful aspects. This involves
addressing the shortcomings in one algorithm with the strengths
of the other, with the aim of enhancing overall performance.

To allow for the evaluation of new algorithms in comparison
to existing algorithms, a testing environment was required that
could run and evaluate them as needed. The three metrics each
algorithm was assessed on were: 1) How good was the optimum
produced? 2) How many points had to be evaluated to find an
optimum? 3) How much computation was required to find an
optimum? For each algorithm, all three metrics were measured
for different optimization problems over a range of dimensions,
varying from low numbers (under 20) to high numbers
(multiple hundreds). Additionally, each situation had to be run
multiple times so that the algorithm's average performance
could be calculated, and its consistency could be determined.

For all the data produced, tables and graphics were generated
that could be analysed to assess whether any new algorithms
could beat the existing algorithms. To successfully solve the
problem, any new algorithm created had to be able to
consistently beat existing algorithms for either metric 1 or 2 for
at least some functions and dimensionality ranges.
Additionally, metric 3 had to remain low enough that measuring
the values of metrics 1 and 2 remained feasible.

II. RELATED WORK

A. Curse of Dimensionality

One of the key challenges in high-dimensionality scenarios is
the curse of dimensionality, which is how spaces become
considerably more challenging to handle as their dimensionality
rises [8]. The curse of dimensionality poses significant
challenges in black box optimisation problems, necessitating
effective strategies to prevent rapid degradation of algorithm
performance with increasing dimensions [9]. Firstly, as the
dimensionality increases, data points become more sparsely
distributed across the space, meaning there is a substantial gap
between data points. This sparsity makes it difficult to
accurately predict the values of the black box function due to
an insufficient evaluated points for modelling the function's
behaviour. Additionally, as the dimensionality of the problem
increases, the number of parameters any model must learn
increases substantially to account for the increased dimensions
[9]. This means expanding dimensionality creates a challenge,
demanding more complex models trained on more sparse data.
Furthermore, this increasing dimensionality renders distance
values less meaningful, as the distances between data points
distributed across the space become more uniform [8]. This

poses challenges when performing tasks such as comparing
distances, as the compared distances will be far more similar in
value, thus providing less information [8]. This places value on
techniques that do not rely on distances to make inferences
about high-dimensionality spaces.

B. Bayesian Optimisation

One such solution for continuous black box optimisation is
Bayesian Optimisation [6]. Bayesian Optimisation employs a
Bayesian statistical model, typically based on Gaussian process
regression, to predict the behaviour of a complex black box
function using all available evaluated data points. Gaussian
process regression utilises the evaluated data points to fit a
multivariate Gaussian distribution, which can then be used to
predict the function's values across the entire space [10]. This
predicted distribution is then used to form the acquisition
function, that quantifies the likelihood of a given point being
the quality optimum within the search space [6]. It combines
the predicted values and uncertainties from the Bayesian
statistical model, with higher expected values and higher
uncertainties suggesting regions that are potentially better than
the current optima. Next, the maximum of the acquisition
function needs to be located to give the point which has the
highest expected improvement over the current optima. Now
the point with the highest expected improvement can be
evaluated. This allows for the Bayesian statistical model to be
updated with the new information, so the new point with the
highest expected improvement can be found. This process is
repeated until a stopping criterion is met. This produces a model
that always attempts to evaluate the point next with the highest
expected improvement of the current optimum.

C. Bayesian Optimisation with a Gaussian process
regression, and the Curse of Dimensionality

Unfortunately, Bayesian optimisation is highly affected by
the curse of dimensionality, rendering it ineffective above
approximately twenty dimensions [6]. One of the challenges
with Bayesian optimisation is in modelling of predicted values
for the black box function across the entire search space [9].
Modelling the entire search space becomes massively more
challenging as the dimensionality of the problem increases,
requiring a far more complex model to be used. Moreover,
Gaussian process regression, commonly used in this process,
relies on distances to nearby data points for predicting the black
box function. However, information regarding distance to
nearby data points degrades significantly at higher
dimensionality [9]. This is because distances between data
points become relatively larger and more similar as
dimensionality increases, making it more challenging to extract
meaningful information about these distances.

These challenges of the curse of dimensionality are notably a
prominent when optimising the acquisition function [9]. Firstly,
due to the sparsity of the data points used to construct the
acquisition function, and the increase in similarity of distance
between them, the acquisition function becomes increasingly
less accurate at higher dimensionality. As a result, significant
proportions of the acquisition function become flat plains of

3
ENGR 489 (ENGINEERING PROJECT) 2023

uniform value, making optimisation of it challenging with
traditional techniques like DIRECT and gradient descent [5].
Additionally, since the acquisition function incorporates
uncertainty, the large flat regions will have high uncertainty due
to their high distance from evaluated data points. Consequently,
maximising the acquisition function will often result in
selecting points in the furthest regions of the search space, as
they exhibit the highest uncertainty [9]. This promotes a blind
search of far regions of the search space rather than converging
towards an optimum.

In summary, the curse of dimensionality has a significant
impact on multiple steps in Bayesian optimisation [5].
Consequently, it is crucial to employ techniques to address
these challenges if Bayesian optimisation is to remain
applicable at high dimensionality. Fortunately, there are
approaches available to alleviate these issues. One such
approach is dimensionality reduction, for example selecting the
most influential dimensions for optimisation or embedding the
high-dimensional space into a lower-dimensional one [9]. Even
more advanced techniques taking advantage of ideas such as
low dimensional feature spaces and sparse axis-aligned
subspaces, also focused on reducing the dimensions of the
problem [5], [11]. These techniques make assumptions about
the data, allowing for a reduction in dimensionality and
mitigating the effects of the curse of dimensionality. It is
important to note that these dimensionality reduction
techniques are applicable to various optimisation techniques, as
they do not specifically target the shortcomings of Bayesian
optimisation.

D. CMA-ES

A more resent technique that has proven successful in
performing high dimensional optimisation is Covariance
Matrix Adaptation Evolutionary Strategy (CMA-ES) [7].
CMA-ES has been successfully applied in various fields,
including neural networks, thermo-mechanical processing,
neural topologies, molecular alignment, and many others [12].
CMA-ES achieves this by maintaining a probability distribution
that models the likelihood of a point being the global optimum.
It performs this using a multivariate Gaussian distribution. The
distribution is represented as:

𝑚 + 𝜎𝑁(0, 𝐶) (1)
In this equation, m represents the mean of the Gaussian

distribution, which indicates the point currently considered
most likely to be the global optimum. σ is the step size
parameter that affects the spread or proximity of the distribution
around the mean [7]. C represents the covariance matrix of the
distribution, which contains the predicted variances and
covariances between dimensions.

At each step of the CMA-ES algorithm, a small selection of
points is sampled from the distribution and evaluated [7]. This
evaluation allows for the update of m, σ and C using the newly
sampled points. Firstly, to update these values, the new points
are ranked based on their evaluated values. Next each point
receives a weight in accordance with their rank position, with
higher weights being given to points with better evaluations.

Next, m is updated to the weighted average of the new data
points. This update functionally shifts the mean, and thus the
whole distribution, towards the new highest ranked points to
facilitate exploration towards potentially better solutions.
Covariance matrix C is updated by comparing the weighted data
points to m and produces a new covariance matrix specific for
the new data points. This new covariance matrix is then
combined with C with linear combination to obtain the updated
value of C. This allows the covariance matrix C to capture the
directions around the mean m that exhibit the most variance in
high-quality evaluated data points.

CMA-ES also incorporates the concept of momentum in the
covariance update. Moreover, the step size parameter σ is
updated based on the observed movement of the mean m. This
means if the mean m is constantly moving a significant amount
in a specific direction, the step size will increase to exploit this
trend to find the optima more efficiently. Conversely, if the
mean is not moving constantly in a specific direction, the step
size will be decreased to focus on exploration around the
vicinity of the mean’s current location.

Overall, this allows CMA-ES to estimate potential locations
of the global optima using only a multivariate Gaussian
distribution as a model [7]. Additionally, CMA-ES can use
small sets of evaluated points to adapt this representation during
the optimisation process to converge towards the optimum.

E. CMA-ES and the Curse of Dimensionality
CMA-ES has shown success at in high dimensionality

problems as it is less affected by the curse of dimensionality
than Bayesian optimisation. Firstly, it does not aim to model the
entire search space, instead estimating the location of the global
optima using only a multivariate Gaussian distribution. This
means CMA-ES uses a simple distribution that still allows for
stability, and finite predictions of the variances in the data.
Additionally, this allows CMA-ES to make minimal
assumptions about the data, avoiding making assumptions
about independence or relationships, instead learning them as it
goes. This allows CMA-ES to avoid overly complex models,
such as the acquisition function required in Bayesian
optimisation. Moreover, CMA-ES circumvents directly
comparing lengths, which can pose challenges at high-
dimensionality [8]. Instead, it employs processes such as
ranking points along with measuring their mean, variance, and
covariance, which are far less susceptible to the adverse effect
of the curse of dimensionality.

Unfortunately, CMA-ES is not immune to the challenges
imposed by the curse of dimensionality [13]. Firstly, it is
affected by the inherent challenge of increasingly large search
spaces. In addition, CMA-ES needs to learn the n×n covariance
matrix for a problem with n dimensions [14]. This is a
substantial (n2 + n)/2 parameters that need to be learnt, which
equates to 500500 parameters for a 1000-dimensional problem.
This means massive quantities of data are required to learn these
many parameters. This abundance of parameters to learn
becomes significant hindrance holding back CMA-ES at
hundreds of dimensions.

One solution to the large number of parameters in CMA-ES

4
ENGR 489 (ENGINEERING PROJECT) 2023

is proposed by SEP-CMA-ES [14]. This approach suggests not
learning covariances, instead focusing only on learning
variances, thereby reducing the parameters to learn down to n
for a n-dimensional problem. This reduction in parameters can
help mitigate the impact of the curse of dimensionality [13].
However, this simplification assumes that all variables are
independent, which may lead to significant degradation of
performance when optimising non-separable functions. Since
most real world high-dimensional optimisation problems are
non-separable functions, the applications of this solution are
limited [14].

Additionally, the simplification to a Gaussian distribution
does come with limitations. One such limitation is that CMA-
ES primarily focuses on convergence towards a single point,
specifically the mean of its distribution. This removes its ability
to switch to an entirely new point if exploitation of the current
point has led to an optimum. In contrast, other optimisation
techniques like Bayesian optimisation can perform this switch
back to exploration when the expected improvement of the
currently explored optimum becomes low. This ability to switch
back to exploration is important for exploring the entirety of the
search space and to remaining catch in a local optimum. But
CMA-ES is instead must restart the learning process after it
converges to an optimum if it wishes to see further
improvement, disregarding a significant amount of information
about evaluated points in the process. This limitation ultimately
decreases the quality of CMA-ES in terms of exploration
adaptability.

F. Recent CMA-ES Techniques
New techniques aimed at improving CMA-ES are

continuously being proposed, one of which involves using a
mixture model [15]. In this approach, the traditional Gaussian
distribution in CMA-ES is replaced with a collection of small
mutation vectors. These mutation vectors together form a
mixture model that approximates a Gaussian distribution. This
reduces the number of parameters that CMA-ES is required to
learn to be reduced by leveraging the simplicity of the small
mutation vectors. This helps mitigate the need to learn an entire
covariance matrix, reducing what the algorithm is required to
learn.

Another promising technique is combining CMA-ES with
Monte Carlo Tree Search, a technique with application in
complex optimisation problems [16]. This technique entails
decomposing CMA-ES into a tree structure, where each node
represents a region of space with its own mean and covariance
derived from its children. By utilising this tree structure, CMA-
ES can effectively search multiple promising regions of space
simultaneously as the tree decomposes the space down into
promising subregions. Importantly, since the nodes are
constructed from their children, this technique does not require
significantly more parameters to be learned compared to
standard CMA-ES. The success of this technique demonstrates
the potential benefits of searching multiple means within CMA-
ES.

III. DESIGN

A. Decision CMA-ES

When a run of CMA-ES stops finding better optima,
indicating convergence to a local optimum, in the usual
approach it restarts, and an alternative solution is sought. An
alternative to this iterative technique involves parallelising
individual searches. In this parallel approach, multiple CMA-
ES searches start from the first generation, and in each
successive generation, one CMA-ES algorithm is selected to
advance by a generation. The simplest implementation of this
parallel algorithm advances all searches uniformly, lacking
interaction between them. However, under these conditions, if
a predetermined number of searches are executed, the result
remains the same as in the iterative approach. In this scenario,
the predetermined number of searches is performed without
interaction among them, resulting in the same outcomes.

In the parallel approach, there is flexibility in selecting which
search to advance in each generation as they do not need to be
advanced uniformly. This presents an opportunity to
incorporate the Bayesian principle of expected improvement
into CMA-ES. Expected improvement can guide the selection
of which search to advance in the next generation based on its
current performance, producing a decision CMA-ES algorithm.
This allows the best-performing search to be favoured for
advancement. Then as a search converges to a local optimum
and its performance stagnates, its expected improvement
diminishes and should be selected less for advancement. This
will then allow for the opportunity of another search to be
advanced which have not yet converged to an optimum to be
selected. This produces a dynamic system where the search
with the highest expected improvement is advanced each
generation.

Fig. 1. The process of predicting the convergence curve of a

minimisation problem.

To calculate the expected improvement for each individual

search in this context, a crucial shift from the Bayesian
optimisation paradigm is required. In Bayesian optimization,
expected improvement is typically computed using a prediction

5
ENGR 489 (ENGINEERING PROJECT) 2023

of the objective function being optimized. However, in our
case, we are predicting the convergence curve itself, as
demonstrated in Fig. 1.

This shift in focus means the objective differs from Bayesian
Optimisation, where the primary aim is to identify the
maximum of an acquisition function. In our context, the goal is
to choose the predicted convergence curve that has the best
expected improvement. This selection process involves
pinpointing a specific point within the predicted convergence
curves to assess and determine which one demonstrates the
most significant expected improvement.

If we consider the expected improvement of advancing just
one generation, the algorithm will invariably favour the search
with the best optima observed so far. This is because, in the
immediate next generation, the predicted convergence curve for
the search with the best optima is likely to be the lowest.
However, when looking ahead by more than one generation,
searches that predict greater improvements, even if their current
optima are suboptimal, will be favoured. This effect can be seen
in fig. 1.

To strike a balance between exploring poorly explored
regions and exploiting areas with known quality optima, we
must look ahead by an appropriate number of generations. This
concept appears in other optimization algorithms, which often
start by favouring exploration and gradually shift toward
exploitation as they progress [17]. It would then logically
follow that decision CMA-ES would benefit from dynamically
adjusting how many generations ahead is based on the known
quantity of points that can be evaluated. When the algorithm is
expected to run for many generations, considering several
generations ahead is appropriate. Conversely, when the
algorithm has only a few more generations to run, a more
immediate comparison of expected improvements is warranted.

In Bayesian optimization, Gaussian Processes are typically
employed to model and predict the solution space, enabling the
computation of expected improvement. In this context, these
techniques can predict the convergence curve. However, a
challenge arises when using Gaussian processes in this manner,
because the function produced converges to a preset value when
far the observed values in the convergence curve. While this
value is traditionally set to the mean of the observed values, this
assumption is incorrect, as convergence curves do not converge
toward their own average. Instead, they tend to converge to a
value equal to or lower than their current value. To account for
this, the preset value would need to be set lower than the current
optima for the search, becoming the assumed asymptotic
convergence point. This, however, would require predicting
what the convergence curve converges to through another
method, potentially introducing inaccurate assumptions.
Furthermore, when considering a sufficiently large number of
generations ahead, all searches are assumed to converge toward
their respective assumed convergence point. In such a scenario,
the potentially incorrect assumed convergence points
significantly influence the expected improvement calculations.
For instance, if the same convergence point were selected for
all searches, then, when predicting far enough ahead, all

searches would yield nearly identical expected improvements.
This renders the expected improvement metric essentially
worthless as a predictor.

Essentially what is needed is a model capable of producing
predicted mean and variance values, so that expected
improvement can be calculated. Other, regression models can
be employed to predict the convergence curve. The simplest
approach involves using Bayesian linear regression, but this
assumes linearity, which may not hold true for convergence
curves. To mitigate the effects of this assumption, only the most
recent generations from the convergence curve can be used for
linear regression, thereby assuming the search’s optima will
continue to improve at its recent rate.

Alternatively, other regression models, such as exponential
decay models, might be used to incorporate behaviour akin to
that of convergence functions and offer more flexibility
regarding curve shape. However, these models are more
complex to fit the linear regression while still making
significant assumptions about the shape of the convergence
curve [18].

B. Mixture CMA-ES

In the parallel CMA-ES structure, each search is viewed as an
isolated process. However, this assumption of isolation likely
incorrect, as the other searches running in parallel are within the
same search space and potentially overlap with each other. This
is notably the case when the algorithm is performing
exploration of the search space, or multiple searches have
converged to the same region of the search space. This means
data from within one search could hold useful information for
updating other distributions during both exploration and
exploitation.

The independent distributions might be view as a single
amalgamated distribution. Given that the individual
distributions are Gaussian, this amalgamation creates a
Gaussian mixture model that encompasses the entire search
space. This unified distribution facilitates the sampling of data
points for evaluation, and these evaluated data points can be
employed to update the entire model as required, as opposed to
updating just a single Gaussian distribution.

The updating technique for CMA-ES distributions is specific
to individual Gaussian distributions within this mixture model.
Each model should be updated with relevant data from within
its own distribution, as some data points may lie far outside of
it and would not be helpful in the updates. For example, if all
distributions were to consider all data points relevant then all
the distributions will immediately become identical, as they are
using the same process to update their means and covariances.
This immediate convergence of all means together when all
data is share can be seen in Fig. 2.

6
ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 2. Mean’s converging together when data is shared,

dimensionality has been reduced to 2 dimensions with PCA.

To determine the appropriate data points to update each

search, we need to establish the responsibility of each
distribution for each data point, to weight how much each
distribution should be updated with each data point.

From a Bayesian perspective, our goal is to calculate the
posterior probabilities, which represent the updated
probabilities of each data point's association with the
distributions after observing the data. This process involves two
key components: the likelihood and the prior. The likelihood
measures how well a data point aligns with each distribution
and is represented by the Probability Density Function (PDF)
values for each distribution evaluated at the data point. This step
assesses the compatibility of the data point with each
distribution.

In the absence of prior information or prior knowledge about
the origin of the data point, we adopt a uniform prior, assigning
equal probability to all distributions before data observation.
This choice maintains a neutral standpoint and prevents bias in
favour of any specific distribution. We apply Bayes' theorem to
combine the likelihood and the prior to determine the posterior
probabilities in the standard way, as implemented in Gaussian
mixture models [19].

The Bayesian inference process involves updating our initial
beliefs, represented by the uniform prior, with the information
obtained from the likelihood, which reflects the observed data.
To derive meaningful probabilities for each distribution, we
utilize the softmax function as a normalization step. The
softmax function transforms the PDF values (indicating
likelihood) into probabilities (known as responsibilities).
Crucially, this normalization ensures that the probabilities sum
to one across all distributions, providing a coherent
representation of the likelihood that each data point belongs to
each distribution.

Unfortunately, this technique is susceptible to a problem from
the high dimensionality of the input domains to which the
algorithm is applied. Notably, the probability density of one
standard deviation away from the mean at a given
dimensionality can be modelled as follows:

𝑃 =
ଵ

(ଶగ)
೏
మ

𝑒ି
೏

మ [20] (2)

Where P is the probability density one standard deviation
from the mean, and d is the number of dimensions. This
equation exhibits exponential decay, and by the time 200
dimensions are reached, the probability density at one standard
deviation is extremely small, about 5.66 × 10-124. These
minuscule values fall outside the range of floating-point
precision used by Python, the language in which the algorithm
is implemented. Moreover, they cannot be used in the softmax
function because exponentiating such values would demand
even greater precision. To circumvent this issue, the use of log
PDF values is preferred. Logarithmic values operate on a more
stable logarithmic scale, preserving numerical precision while
maintaining relative relationships between PDF values.

However, transitioning to the log scale alone is insufficient,
especially at high dimensionality. For example, the log PDF
value one standard deviation away from the mean in 200
dimensions is still log(5.66 × 10^-124), which equals -281. Due
to the magnitude of these probabilities and the exponential
nature of the softmax function, small differences in log PDF
values can lead to significant disparities in the calculated
responsibilities. As a result, it's highly likely that all
responsibilities, except for one, will be rounded to 0, making
data points become unambiguously associated with a particular
Gaussian. Such responsibility values are not useful for
effectively distributing data, as each data point will contribute
to only one Gaussian distribution. Therefore, it becomes
necessary to scale these probabilities toward 0. A natural way
to achieve the required softening of probability values is to
make and adjustment to the softmax as follows:

𝜎(𝑧)௜ =
௘ഁ೥೔

∑ ௘
ഁ೥ೕ಼

ೕసభ

 (3)

Where σ is the softmax function, z represents the log
probability density value, K is the number of algorithms, and β
is the base used in the calculations. β must be within the range
of 0 ≤ β ≤ 1 to scale the probabilities effectively. Decreasing the
value of β concentrates probability distributions around the
positions with the smallest input values. Setting β to 1 maintains
the same softmax function as before, which is unlikely to yield
useful responsibilities. Setting β to 0 results in equal usage of
data by all distributions, causing full information sharing and
the convergence of all CMA-ES searches after one generation.
Determining an appropriate β value is essential to balance data
sharing in the softmax equation. This introduces an additional
hyperparameter into the multi-CMA-ES algorithm, and
dynamically setting this hyperparameter poses significant
challenges. These challenges stem from the remarkable
differences in PDF values produced by different problems and
dimensionalities, which must be appropriately reduced to
achieve correct data sharing tailored to each specific problem.

Another possible approach to determine responsibility, like
how CMA-ES assigns weights to higher fitness points, involves
adopting a ranking-based system. In this method, each data
point is assigned a responsibility value based on its rank within
the distribution. The point with the highest probability density

7
ENGR 489 (ENGINEERING PROJECT) 2023

receives the highest weight, and this ranking-based approach is
followed in descending order for the remaining points. This
means that the magnitude of the probability values would not
be considered; rather, it focuses on whether values are higher or
lower than each other. Consequently, it eliminates the need for
a scaling parameter like β.

However, this technique comes at a cost – it results in the loss
of information about the actual magnitude of probability
density values between different points. For instance, two
points may have significantly different probability density
values, but if there are probability density values between them,
they will be assigned similar ranks and, consequently, similar
responsibilities. This loss could have a detrimental impact on
the calculation of accurate responsibilities. In this ranking-
based system, points may be incorrectly assigned large or small
responsibilities solely based on the quantity of points with
higher or lower probability densities than themselves.

Now that the responsibilities have been found; they can be
used to dictate what data is to be used to update each search.
Fortunately, CMA-ES already incorporates point weighting
based on fitness, so we can apply additional weighting to each
point based on responsibilities directly. This can be done as:

𝑤∗
௜ =

௪೔∙௣೔

∑ ௪ೕ∙௣ೕ
ಿ
ೕసభ

 (4)

Using the original fitness-based weight values of w, and the
responsibility values of p, the new weight values w*, can be
found for point i, for the N different data points. This allows
each CMA-ES search favour point that when its own
distribution when updating its distribution.

C. Testing Environment

To facilitate the proper evaluation of the designed algorithms,
a testing environment required establishment. The testing
environment must allow for many existing and designed
algorithms to be run on a variety of toy problems to see which
preforms better and to highlight intricacies of how the algorithm
works. More specifically this includes visualisations of how the
different convergence curves compare across multiple runs, and
how the one or more Gaussian distributions are changed over
time. It must also document computation times of the
algorithms to ensure they maintain computational feasibility.

IV. IMPLEMENTATION

A. Testing Environment

The programming language for the testing environment is
exclusively python [21]. It has been selected as it is the standard
programming language used in machine learning tasks, such as
this project, thus has the best libraries and other tools available
for utilisation within this project. Such libraries that will be used
extensively include NumPy, scikit-learn, pandas and
matplotlib, as they are standard libraries for use in machine
learning tasks. Much of the results are presented in Jupyter
Notebooks [22]. Jupyter Notebooks are an ideal platform for
enhancing data visualisation and results presentation in the
testing environment due to their interactive and versatile nature,
facilitating the seamless integration of code, visualisations, and

explanatory text in a single document.
The testing environment itself will heavily utilise the pymoo

library [23]. Pymoo was selected as it is a library designed for
performing black box optimisation tasks such as those within
the project. This means it can be used as the basis for the testing
environment, removing the requirement to create code for
executing newly created algorithms, as well as large quantities
of pre implemented optimisation algorithms and problems that
are invaluable for evaluation of the new algorithms.

The evaluation of implemented algorithms requires test
problems that replicate the high-dimensional, multi-optima
structure found in the black-box functions these algorithms are
designed to optimise. These test problems should also have the
advantage of being computationally inexpensive to evaluate,
ensuring efficient testing. To meet these criteria, the Schwefel,
Rastrigin, Ackley, and Griewank functions have been selected
[24]. They offer a diversity of problems with many optima and
can be scaled to higher dimensions.

B. Ensuring Fair Testing

The testing environment must prioritize fairness in its
comparisons to enable meaningful conclusions to be drawn
from the results. Firstly, all convergence curves will be
generated from many runs of the algorithm being tested to
ensure that the performance is accurately represented, and
robustness is assessed across multiple runs. Furthermore, the
quantity of evaluated points as the common x-axis for all
performance comparisons. This approach aligns with the
primary objective of high-dimensionality optimization
algorithms, which is to minimize the number of evaluated
points, a critical and costly step, thereby ensuring meaningful
comparisons among algorithms.

Additionally, all algorithms use an identical implementation
of CMA-ES that is based on the techniques presented in [7].
Additionally, all initial populations are generated with Latin
Hypercube Sampling, and simple and effective way of
generating diverse samples a high dimensionality [25]. To
further ensure the CMA-ES searches are the same, identical
hyperparameters used in all, see Table I for details the values.
Table I

Hyperparameters used by all CMA-ES algorithms.
Hyperparameter Set value
μ/λ Populations size 200
Initial σ value, Starting
standard deviation of
sampled points

Problem Range

Cσ Decay rate for the
cumulation path for the
step-size control

0.047

cc Decay rate for
cumulation path for the
rank-one update of the
covariance matrix

0.17

c1 Learning rate for the
rank-one update of the

0.096

8
ENGR 489 (ENGINEERING PROJECT) 2023

covariance matrix update
cμ Learning rate for the
rank-μ update of the
covariance matrix update

0.082

dσ Damping parameter for
step-size update

9.27

The selected hyperparameter show in Table I allow for the are

suitable to effectively preform optimisation on the problems
used in the evolution of the algorithms.

C. Ensuring Fair Testing in Decision CMA-ES

For the evaluation the algorithms that uses expected
improvement to select CMA-ES to advance next, a few
additional things need to be ensured to make the tests are fair.
Notably evaluations will be based on comparison to basic
iterative and parallel CMA-ES algorithm shown in Fig. 3. This
means that the evaluation will be able to conclude if using
expected improvement offers significant improvement when
running CMA-ES in parallel. Furthermore, it will allow for the
evaluation of if the changes are enough to out preform the
standard iterative approach.

These tests will need to be run for enough evaluate points so
that at least three interactive CMA-ES searches can converge to
an optimum so that full effects of running the CMA-ES
Searches multiple times can be observed.

D. Ensuring Fair Testing in Mixture CMA-ES

The goal of the Mixture CMA-ES algorithm is to assess if
running training multiple searches with the same data pools an
improvement only a running a single CMA-ES algorithm. As
such performance comparisons should be made to a standard
implementation of CMA-ES.

E. Algorithm Implementation Details

The Decision CMA-ES implementation relies on Bayesian
linear regression for expected improvement calculations. This
was chosen for its simplicity to avoid overly complex
computations and minimize the number of assumptions
required, as discussed.

In the case of Mixture CMA-ES, the implementation employs
the softmax function on log probability density values, ensuring
accurate calculation of responsibility values. The only
assumption in this approach is the selection of a β value for
scaling responsibilities. A specific β value of 5.62×10-5 has
been consistently chosen for all tests. This selection ensures that
Mixture CMA-ES can be applied effectively to a range of
problems without the responsibility values losing their
meaningful information, as discussed.

V. EVALUATION

A. Decision CMA-ES

Before the Decision CMA-ES algorithm can be evaluated,
first the simple parallel algorithm and iterative algorithms used
as benchmarks need to be investigated.

Fig. 3, Running three CMA-ES searches parallelly and

iteratively.

Fig. 3 shows running CMA-ES searches in parallel does not

provide significant advantages when compared to running them
iteratively. The same quality minima are achieved only after
100,000 evaluated points, because the mean and confidence
interval of the two algorithms become the same at that point.
Unfortunately, a notably worse results occur at fewer than
40,000 evaluated points were the confidence interval for
parallel CMA-ES is fully above iterative. So, Running the basic
CMA-ES search in parallel, while not leading to noticeable
improvements, maintains a consistent outcome, albeit with a
slightly slower convergence rate.

But is the parallel CMA-ES is expanded to use the expected
improvement by implementing the decision CMA-ES
algorithm. If the expected improvement in incorporated into the
algorithm’s performance notable changes.

Parallel CMA-ES vs Decision CMA-ES

9
ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 4. Convergence of basic Parallel CMA-ES compared to

Decision CMA-ES in 100 dimensions across 10 runs on the
Schwefel problem.

Fig. 4 illustrates that during the initial phase of the algorithm's

execution, Decision CMA-ES consistently identifies lower
optima than the basic Parallel CMA-ES alternative. This
difference becomes particularly evident between 20,000 and
40,000 evaluated points, as the confidence intervals of the two
algorithms do not overlap in this region. This suggests that
Decision CMA-ES exhibits a clear advantage in performance
during the early stages of the optimization process.

However, beyond 40,000 evaluated points, an interesting shift
occurs. The confidence intervals begin to overlap, and by the
time 60,000 evaluated points is reached, the means of both
algorithms fall within each other's 95% confidence intervals.
This indicates that, in the latter half of the algorithm's
execution, Decision CMA-ES, on average, continues to
perform better than Basic Parallel CMA-ES but not to a
statistically significant extent.

If the dimensionality of the problem is scaled from 100 to 200
dimensions, the result remains remarkably similar.

Fig. 5. Convergence of basic Parallel CMA-ES compared to

Decision CMA-ES in 200 dimensions across 10 runs on the
Schwefel problem.

In Fig. 5, it becomes evident that even when the

dimensionality of the problem is significantly increased,
Decision CMA-ES outperforms Parallel CMA-ES
significantly. However, after all distributions begin to converge
to a local optimum, the difference between the two algorithms
shrinks, with only a slight favour towards Decision CMA-ES.
This behaviour is notably consistent with what was observed in
the 100-dimensional case, highlighting that dimensionality has
a limited impact on the differences between these algorithms.

If the Decision CMA-ES algorithm can be additionally
applied to other problems to see how it performs on problems
significantly different to the Schwefel problem.

Fig. 6. Convergence of basic Parallel CMA-ES compared to

Decision CMA-ES in 100 dimensions across 10 runs on the
Rastrigin Problem.

10
ENGR 489 (ENGINEERING PROJECT) 2023

As shown in Fig. 6, the Decision CMA-ES algorithm

consistently outperforms the basic parallel alternative on the
Rastrigin problem for the first 60,000 evaluated points.
However, as the number of data points increases, the
performance of the two algorithms becomes more similar, with
Decision CMA-ES maintaining a slight edge in terms of
average performance but not to a statistically significant extent.
This observation highlights that the Decision CMA-ES
algorithm is not overly problem-specific and can be applied to
a broader range of optimization problems.

The slight improvements seen in the performance of Decision
CMA-ES can be attributed to its expected improvement
decision process as it is the only different between these
algorithms. This decision process can be visualised to illustrate
what sets Decision CMA-ES apart.

Convergence of Decision CMA-ES algorithm:

Fig. 7. The convergence of the three searches within one run

of Decision CMA-ES shown in respects to number of evaluated
points with the search.

As depicted in Fig. 7, there is an uneven distribution of

evaluated points among the three searches. Search 0 has
received over 40,000 of the total 100,000 evaluated points,
while Search 2 has only received fewer than 30,000. Notably,
Search 0 converged to the lowest value and had the most
evaluated points, while Search 2 converged to the highest value
and had the fewest evaluated points. This observation
underscores the fact that the searches converging to lower and
more optimal minima have more points evaluated within them.
This behaviour is to be expected when following expected
improvement as having better optima yields a greater expected
improvement.

Convergence of Decision CMA-ES algorithm:

Fig. 8. The convergence of the three searches within one run

of Decision CMA-ES in respect to the total number of evaluated
points, instead of just points within its own search. Darker
regions represent point being evaluated with the given
distribution.

When the data shown in Fig. 7 is transformed to display the

convergence of each search concerning the total evaluated
points, as shown in Fig. 8, a different pattern emerges. In Fig.
8, it becomes evident that search 1 is favoured early in the
process, indicated by its darker curve (show it has a higher
number of evaluated points), causing it to exhibit the lowest
minimum until about 40,000 points.

The preference for evaluating points in search 1 in early
generation can be attributed to its achievement of the lowest
minimum after evaluating 5,000 data points per search, as
demonstrated in Fig. 7. In Fig. 8, after 40,000 total evaluated
points, searches 0 and 2 start to be favoured, as indicated by
their darkening lines and their minima catching up to that of
search 1. However, after 90,000 evaluated points, only search 0
is favoured, leading it to have the highest number of evaluated
points, as shown in Fig. 7.

This behaviour is also closely linked to the expected
improvement criterion. Early on, search 1 had the highest
expected improvement since it showed the most improvement.
As it began to converge to a local optimum, searches 0 and 2
displayed higher expected improvements so explored more.
Finally, all searches had converged to local optima and search
0 was favoured as it possessed the highest expected
improvement.

The computational time taken for both algorithms also
requires consideration.

11
ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 9. Average computational time on Parallel and Decision

CMA-ES with 100,000 evaluated points

As shown in Fig. 9, Decision CMA-ES consistently takes

slightly more computational time than Parallel CMA-ES. This
outcome is expected because both algorithms evaluate the same
number of points and perform the same number of searches.
However, Decision CMA-ES involves an additional step of
calculating expected improvement in every generation, which
demands slightly more computation. This additional
computation step appears to take approximately one second for
all problems. The small increase in computation time, which
seems to be minimally affected by dimensionality, does not
impose a significant computational cost. Therefore, Decision
CMA-ES remains as computationally efficient as its basic
parallel counterpart.

In conclusion, it is evident that while parallel CMA-ES may
not yield performance improvements over the iterative
approach, by the end of the algorithm's execution, they
converge to similar results within the same number of
evaluations. However, Decision CMA-ES demonstrates a
noteworthy improvement over parallel CMA-ES during the
early generations and maintains a slight advantage in the later
stages, all without incurring a substantial increase in
computational cost. As such, Decision CMA-ES shows promise
in enhancing the performance of CMA-ES searches, especially
when enough points are evaluated.

B. Mixture CMA-ES

If Mixture CMA-ES is taken and compared to a standard
implementation of CMA-ES, we can assess how well it
performs.

Fig. 10. Convergence of standard CMA-ES compared to

Mixture CMA-ES with 20 Gaussian Distributions in 100
dimensions across 10 runs on the Schwefel problem.

As shown in Fig. 10, mixture CMA-ES significantly

outperforms a standard implementation of CMA-ES, with the
confidence interval not overlapping past 13,000 evaluated
points and consistently finding lower minima. This highlights
that despite being required to learn additional distributions, it
can converge at a similar rate to standard CMA-ES in the early
generations. This suggests that Mixture CMA-ES offers
significant improvements over standard CMA-ES on the 100-
dimensional Schwefel problem.

Unfortunately, the same success does not appear in all
problems.

Fig. 11. Convergence of standard CMA-ES compared to

Mixture CMA-ES with 20 Gaussian Distributions in 100
dimensions across 10 runs on the Rastrigin problem.

As shown in Fig. 11, Mixture CMA-ES is no able to out

0 50 100 150 200 250

Schwefel 100d

Rastrigin 100d

Griewank 100d

Schwefel 200d

Rastrigin 200d

Griewank 200d

Computaional Time (s)

Pr
ob

le
m

Computional Times of Parallel vs
Decision

Standard CMA-ES Mixture CMA-ES

12
ENGR 489 (ENGINEERING PROJECT) 2023

preform Standard CMA-ES on the Rastrigin problem, with both
algorithms appearing to find similar optima at all points, show
by their confidence intervals normally overlapping partially, or
even fully. Notably, after 30,000 evaluated points mixture
CMA-ES is, on average, finding slightly higher minima. This
all makes it apparent that Mixture CMA-ES is not able to offer
significant improvements to standard CMA-ES on the 100-
dimentional Rastrigin Problem.

The computational time taken for both algorithms also
requires consideration.

Fig. 12. Average computational time on standard and Mixture

(20 searches) CMA-ES, with 30,000 evaluated points.

As depicted in Fig. 12, updating the Gaussian mixture model

in the Mixture CMA-ES algorithm imposes significantly higher
computational demands. Notably, this process takes
approximately 9 times longer in 100 dimensions and 14 times
longer in 200 dimensions compared to the standard CMA-ES
algorithm. The increased computational requirements are
expected due to the need to update a more complex model.
However, it's important to note that these requirements do not
render Mixture CMA-ES computationally infeasible. The
algorithm remains executable, with Mixture CMA-ES
completing 30,000 evaluations in under 4 minutes even in 200
dimensions. Moreover, when compared to the overall cost
associated with evaluating such many points, this additional
time requirement is likely insignificant.

In summary, the Mixture CMA-ES algorithm can achieve
better optima within the same number of evaluated data points
as the standard CMA-ES on select problem. It accomplishes
this improvement without sacrificing performance on other
problems or becoming computationally infeasible. Therefore,
Mixture CMA-ES appears to offer a significant enhancement
over the standard CMA-ES for the tested problems.

VI. FUTURE RESEARCH

A. Combining Algorithm

Both the Decision and Mixture CMA-ES algorithms
introduce modifications to different aspects of a basic parallel
CMA-ES algorithm. The first aspect determines which search
should be favoured, while the second governs how information
is shared among searches. Importantly, these two techniques
can be integrated into a single algorithm. This integration
involves applying the distribution favouring mechanism of
decision CMA-ES to the Gaussian Mixture model of multi-
CMA-ES. As a result, Gaussians from searches with higher
expected improvements are more likely to be sampled from
within the mixture model. This will be increasing their
representation in the sampling process, allow higher expected
improvement searches to be favoured. However, it's important
to note that the expected improvement calculation needs
adjustments, as points are not explicitly assigned to a
distribution but rather have responsibilities towards each
distribution. Furthermore, the initial assumption that a data
point is equally likely to be sampled from all distributions must
be refined to accommodate the preference given to select
distributions.

B. Dynamic Number of Distributions

In the algorithms implemented, all CMA-ES searches were
initialized at the beginning of the search process. However,
initializing all searches at the start necessitates determining the
number of searches to be used before running the algorithm.
Ideally, you'd want to initialize enough searches to explore
various promising regions, but not so many that the algorithm
struggles to converge to a good solution within the available
point evaluations. Unfortunately, without sufficient knowledge
of the problem and the number of point evaluations required for
CMA-ES to converge, determining the appropriate number of
searches can be challenging.

The parallel CMA-ES structure does present a solution to this
challenge, and it doesn't require all searches to be present from
the beginning of the algorithm. This means that if deemed
necessary, new searches can be initialised during algorithm
execution and added to the collection of parallel searches. In the
decision CMA-ES, this could entail initialising a new search
once the expected improvement of all current searches becomes
too low. This change functionally allowing the algorithm to run
indefinitely without getting stuck indefinably in local optima,
as new searches can be initialised as required. In the Mixture
CMA-ES algorithm, there's potential for a more advanced
process where, if it's deemed that there are insufficient Gaussian
distributions to produce a Gaussian mixture model that
sufficiently captures the search space, more searches can be
initialized to address this. Additionally, if there are more
Gaussians than required as they largely or fully overlap with
each other, searches could be removed to optimise the
representation of the search space.

C. Automatic setting of β parameter from Mixture CMA-ES

The β parameter use in Mixture CMA-ES is, as discussed, is

13
ENGR 489 (ENGINEERING PROJECT) 2023

a challenging parameter to set before executing of the
algorithm. As such it would be best to adjust the responsibility
calculations to avoid the requirement to scaling of the log
probability density with a β value, or to find a way to
dynamically set it. To preform task, further research into what
responsibility values promote desire search patterns in a
Gaussian mixture model. Once this insight in gained, the
responsibility calculations need to be adjusted to produce these
ideal responsibilities more consistently, without a preset β
parameter.

VII. REFERENCES

[1] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl,
“Algorithms for hyper-parameter optimization,” Adv
Neural Inf Process Syst, vol. 24, 2011, [Online].
Available:
https://proceedings.neurips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization

[2] R. Calandra, A. Seyfarth, J. Peters, and M. P.
Deisenroth, “Bayesian optimization for learning gaits
under uncertainty,” Ann Math Artif Intell, vol. 76, no.
1–2, pp. 5–23, Feb. 2016, doi: 10.1007/s10472-015-
9463-9.

[3] Y. Akimoto, A. Auger, and N. Hansen, “Continuous
Optimization and CMA-ES,” in Proceedings of the
Companion Publication of the 2015 Annual Conference
on Genetic and Evolutionary Computation, in GECCO
Companion ’15. New York, NY, USA: Association for
Computing Machinery, Jun. 2015, pp. 313–344. doi:
10.1145/2739482.2756591.

[4] D. Eriksson and M. Jankowiak, “High-dimensional
Bayesian optimization with sparse axis-aligned
subspaces,” in Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, C.
de Campos and M. H. Maathuis, Eds., in Proceedings of
Machine Learning Research, vol. 161. PMLR, 2021, pp.
493–503. [Online]. Available:
https://proceedings.mlr.press/v161/eriksson21a.html

[5] S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh,
“High Dimensional Bayesian Optimization with Elastic
Gaussian Process,” in Proceedings of the 34th
International Conference on Machine Learning, D.
Precup and Y. W. Teh, Eds., in Proceedings of Machine
Learning Research, vol. 70. PMLR, 2017, pp. 2883–
2891. [Online]. Available:
https://proceedings.mlr.press/v70/rana17a.html

[6] P. I. Frazier, “A Tutorial on Bayesian Optimization,”
Jun. 2018.

[7] A. Auger and N. Hansen, “Tutorial CMA-ES: evolution
strategies and covariance matrix adaptation,” in
Proceedings of the 14th annual conference companion
on Genetic and evolutionary computation. 2012.

[8] M. Köppen, “The curse of dimensionality,” in 5th

online world conference on soft computing in industrial
applications (WSC5), 2000, pp. 4–8. [Online].
Available: https://www.class-
specific.com/csf/papers/hidim.pdf

[9] M. Binois and N. Wycoff, “A survey on high-
dimensional Gaussian process modeling with
application to Bayesian optimization,” ACM
Transactions on Evolutionary Learning and
Optimization, vol. 2, no. 2, pp. 1–26, 2022.

[10] J. Görtler, R. Kehlbeck, and O. Deussen, “A visual
exploration of gaussian processes,” Distill, vol. 4, no. 4,
p. e17, 2019.

[11] R. Moriconi, M. P. Deisenroth, and K. S. Sesh Kumar,
“High-dimensional Bayesian optimization using low-
dimensional feature spaces,” Mach Learn, vol. 109,
no. 9, pp. 1925–1943, Jun. 2020, doi: 10.1007/s10994-
020-05899-z.

[12] P. I. C. Ryan and Others, “References to cma-es
applications,” Strategies, vol. 4527, no. 467, 2007,
[Online]. Available:
http://www.cmap.polytechnique.fr/~nikolaus.hansen
/cmaapplications.pdf

[13] M. N. Omidvar and X. Li, “A Comparative Study of
CMA-ES on Large Scale Global Optimisation,” in AI
2010: Advances in Artificial Intelligence, Springer
Berlin Heidelberg, 2011, pp. 303–312. doi:
10.1007/978-3-642-17432-2_31.

[14] R. Ros and N. Hansen, “A Simple Modification in CMA-
ES Achieving Linear Time and Space Complexity,” in
Parallel Problem Solving from Nature – PPSN X,
Springer Berlin Heidelberg, 2008, pp. 296–305. doi:
10.1007/978-3-540-87700-4_30.

[15] X. He, Z. Zheng, and Y. Zhou, “MMES: Mixture model-
based evolution strategy for large-scale optimization,”
IEEE Transactions on Evolutionary Computation, vol.
25, no. 2, pp. 320–333, 2020.

[16] M. M. Drugan, “Efficient Real-Parameter Single
Objective Optimizer Using Hierarchical CMA-ES
Solvers,” in EVOLVE - A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation VI,
Springer International Publishing, 2018, pp. 131–145.
doi: 10.1007/978-3-319-69710-9_10.

[17] A. K. Gupta, K. G. Smith, and C. E. Shalley, “The
Interplay between Exploration and Exploitation,”
Source: The Academy of Management Journal, vol. 49,
no. 4, pp. 693–706, 2006, Accessed: Oct. 15, 2023.
[Online]. Available:
https://www.jstor.org/stable/20159793?seq=1&cid=
pdf-

[18] J. Frost, “Model Specification: Choosing the Best
Regression Model - Statistics By Jim.” Accessed: Oct.
15, 2023. [Online]. Available:
https://statisticsbyjim.com/regression/model-

14
ENGR 489 (ENGINEERING PROJECT) 2023

specification-variable-selection/
[19] E. P. Xing, A. Qiao, H. Zhang, and B. Liu, “8 : Learning

Partially Observed GM: the EM algorithm,” pp. 10–
708, 2015.

[20] S. L. Miller and D. Childers, “Probability and Random
Processes: With Applications to Signal Processing and
Communications: Second Edition,” Probability and
Random Processes: With Applications to Signal
Processing and Communications: Second Edition, pp.
1–611, 2012, doi: 10.1016/C2010-0-67611-5.

[21] S. Raschka, Python Machine Learning. Packt Publishing
Ltd, 2015. [Online]. Available:
https://play.google.com/store/books/details?id=GOV
OCwAAQBAJ

[22] F. Pérez and B. E. Granger, “IPython: a System for
Interactive Scientific Computing,” Comput Sci Eng, vol.
9, no. 3, pp. 21–29, May 2007, doi:
10.1109/MCSE.2007.53.

[23] J. Blank and K. Deb, “Pymoo: Multi-Objective
Optimization in Python,” IEEE Access, vol. 8, pp.
89497–89509, 2020, doi:
10.1109/ACCESS.2020.2990567.

[24] S. Surjanovic and D. Bingham, “Virtual Library of
Simulation Experiments: Test Functions and Datasets.”
Accessed: Oct. 12, 2023. [Online]. Available:
https://www.sfu.ca/~ssurjano/index.html

[25] A. Olsson, G. Sandberg, and O. Dahlblom, “On Latin
hypercube sampling for structural reliability analysis,”
Structural Safety, vol. 25, no. 1, pp. 47–68, Jan. 2003,
doi: 10.1016/S0167-4730(02)00039-5.

