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Abstract
Clustering is one of the most important unsupervised learning tasks, but it

is very challenging on high dimensional data. In particular, a challenge known
as the Curse of Dimensionality can make clusters significantly less meaningful
as the dimensionality of a dataset increases. To address the Curse of Dimension-
ality in clustering, this project utilses Particle Swarm Optimisation to perform
simultaneous feature selection and feature weighting, which is the first such ap-
proach presented in the literature. Two new internal validation measures are
proposed to be used as optimisation criteria in the new approach, one of which
represents the first clustering specific Bayesian validation measure proposed in
the literature. Experiments show that this novel approach can successfully im-
prove clustering performance relative to baseline algorithms while using fewer
features. Further, the novel validation measures were demonstrated to able to
avoid naive solutions that many distance based validation measures often pro-
duce on high dimensional data.
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Chapter 1

Introduction

Unsupervised learning techniques are important in both academic and industry settings due
to their ability to work with unlabelled data. As such, their use is common in areas such as
pattern discovery and data mining [5]. Within unsupervised learning, clustering is one of
the most fundamental tasks [18, 54]. Clustering can be described as the task of partitioning
a dataset into groups such that elements within groups are related, and elements between
groups are comparatively unrelated [3, 5, 18, 54].

However, there is no strict agreement as to what it formally means for elements to be
related or unrelated. This particular difficulty has been summarised aptly by Backer and
Jain [3] who write “in cluster analysis a group of objects is split up into a number of more
or less homogeneous subgroups on the basis of an often subjectively chosen measure of
similarity (i.e., chosen subjectively based on its ability to create “interesting” clusters), such
that the similarity between objects within a subgroup is larger than the similarity between
objects belonging to different subgroups”.

A measure designed to evaluate a cluster partitioning is named a validation measure, and
the ambiguity in what it means for a partitioning to be good in cluster analysis has led to
the proposal of many cluster validation measures in the literature [53, 1].

Some examples of cluster validation measures include: compactness [1], which measures
of how ’close together’ the data within clusters are; and separation [1], which measures how
’far away’ different clusters are from each other. Because of the inherent subjectivity of what
it means for a partitioning of data to be good, and the abundance of the proposed valida-
tion measures in the literature, finding a suitable validation measure for a given clustering
algorithm and dataset is challenging.

A further complication when performing clustering relates to the dimensionality of data.
High dimensionality in datasets can significantly reduce the ability of clustering algorithms
to find meaningful relationships, through a number of characteristics known collectively as
the Curse of Dimensionality [6, 32]. Thus, for many high dimensional applications of clus-
tering, dimensionality reduction techniques are used in conjunction with a clustering algo-
rithm in order to address these issues [46]. However, dimensionality reduction techniques
can hinder the interpretability of results in some cases, such as when feature construction
methods are used, due to the fact that feature construction creates new features to represent
the original features, which obscures the role of the original features.

A key class of dimensionality reduction algorithms which improve the interpretability
of results is known as feature selection [24]. Feature selection attempts to find a subset of the
original features which give similar or improved results over the case when the full feature
set is used.

The search space of feature selection consists of all possible subsets of features. For a
dataset with dimensionality d, there are a total of 2d possible feature subsets. This large
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search space means that frequently feature selection methods utilise some form of heuris-
tic search throughout the space; utilising sequential forward selection (SFS)[52], sequential
backward selection (SBS)[36], or some variation of these methods [41] to find an appropriate
feature set. Such methods frequently fail to find optimal feature sets as interactions between
features are not well considered in these cases. Specifically it has been shown that no heuris-
tic feature selection search can ever guarantee optimality [51].

To address this concern recent literature has been dedicated to global search methods for
feature selection [56]. Promising results have been found by utilising evolutionary compu-
tation (EC) methods such as particle swarm optimisation (PSO) [56], although the majority
of such work has been performed in a supervised learning setting [56].

By only looking for which features could be included in the final feature set, feature
selection algorithms may ignore potential improvements that could be gained from appro-
priately weighting features, however. Thus the problem of feature weighting should also
be considered, driven by a clear intuition that more important features should be weighted
more heavily than less important features.

Further, where distance based clustering algorithms are used in prior work, distance
functions have been one of only a few standard distance functions (E.g. Euclidean or Man-
hattan distance). The question of whether or not these distance functions are optimal for a
given problem is scarcely addressed, and never addressed empirically.

1.1 Motivations

In the existing literature several competing distance based validation measures for assess-
ing the quality of clusters have been presented [1, 35, 42]. The lack of clear consensus in
the literature regarding the value of these different validation measures means that there is
benefit to testing these measures in the context of various datasets.

Further, where statistical validation measures have been used in clustering, the valida-
tion measures have been applications of broader model selection methods, usually utilising
a Bayesian framework [20, 10]. Thus the development of clustering specific statistical vali-
dation measures presents a clear opportunity to advance the research field.

Additionally, many validation measures present naive solutions if used as the optimi-
sation criteria during the clustering process, e.g. compactness holds a trivially optimal so-
lution when there is a singular arbitrarily compact cluster. These clusters can be said to
violate one of the key criteria in clustering, namely that discovered clusters be “interesting”
[3]. Thus, creation of validation measures which do not lead to trivial clustering solutions
is not only a fundamental requirement for the current project but also a valuable avenue of
research.

Prior work which has aimed to reduce the problems encountered when clustering high
dimensional datasets have utilised both feature construction methods and feature selection
methods.

Feature construction methods tend to hinder interpretability of the results by obscuring
the relationship that any particular feature may have to the partitioning. Given that inter-
pretability of results is a key goal in pattern discovery and data mining tasks, and further
is considered a requirement for models used in many ’mission critical’ systems [9], this lack
of interpretability is a significant limitation for many current dimensionality reduction tech-
niques.

Where feature selection methods, which tend to preserve or improve interpretability,
have been used in the context of clustering the application has typically utilised local search
methods, which are prone to overlooking interactions between features [51].
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Where global search techniques have been used for feature selection they have tended
to improve clustering outcomes while improving interpretability of clusters [11, 51], and
feature weighting has shown benefit in some unsupervised learning tasks [37], however
there is no existing literature regarding simultaneous feature selection and weighting in the
context of clustering. The current project is premised on the idea that simultaneous feature
selection and weighting may offer a more powerful method to significantly improve clus-
tering outcomes while improving interpretability of results, and seeks to provide cursory
tests along these lines. Further, if it is the case that feature selection and weighting do sig-
nificantly improve clustering outcomes, then extending this method to also find a unique
distance function for a dataset, which can be non-uniform in how it addresses the distance
between different features, could further improve results.

Finally, there is a diversity in clustering algorithms, with many clustering algorithms
operating under very different assumptions [18]. This means that, in general, some cluster-
ing algorithms may be significantly more suited for a given dataset. Thus this project seeks
to demonstrate any improvements gained from the novel methods on a variety of different
clustering algorithms.

1.2 Goals

This project seeks to address issues that arise when clustering high dimensional datasets,
while improving the interpretability and quality of resulting clusters and providing insight
as to how important different features are to the dataset as a whole.

In order to achieve this, validation measures which do not lead to naive solutions when
used as optimisation criteria must be established. This project seeks to develop two novel
validation measures, one distance based and the other statistical. A distance based valida-
tion measure is being utilised to make use of the existing literature on distance based val-
idation measures, as while many distance based validation measures have been proposed
previously, they have not been examined as optimisation criteria for feature selection and
weighting.

A statistical validation measure will be proposed due to the success of previous work
in using broad model selection criteria as validation measures in clustering [20, 10]. A sta-
tistical validation measure which is developed explicitly for clustering has the potential to
improve on these existing methods, and will also act as exploratory research, extending the
literature by considering how Bayesian probability can be applied specifically to the prob-
lem of clustering.

After establishing these measures this project seeks to create a novel approach to feature
selection and weighting in clustering utilising PSO. Prior work indicates that both feature
selection and weighting can improve clustering results, over the respective cases where the
full and unweighted feature sets are used. However, in prior work only one of these two
methods have been applied, and thus no prior work has investigated a combined feature
selection and weighting method in clustering.

Further, an extension to this method will be considered to also find exponents with
which pairwise distance is calculated. This extension is driven by the fact that very lit-
tle work has been done on constructed distance measures in clustering, meaning that this
method will extend the literature.

PSO will be utilised because it has been shown to be a broadly applicable global search
technique, especially for continuous problems, which generates highly interpretable solu-
tions.

Once these methods are developed this project seeks to examine the behaviour of the
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methods when applied to a variety of different clustering algorithms, specifically aiming to
improve statistical measures of the correctness of the returned clusters while using only a
subset of the features.

Thus, the overall goal of this research is to develop a broadly applicable method for
simultaneous feature selection and feature weighting in clustering using PSO, investigating
the use of internal validation measures as optimisation criteria within this framework.

The specific goals of this research are to:

1. Create two novel optimisation criteria, one distance-based and one statistical, for fea-
ture selection and weighting in clustering problems,

2. Create a novel PSO method for simultaneous feature selection and weighting in clus-
tering, and

3. Investigate the generality of the novel algorithms and optimisation criteria by apply-
ing them to several different classes of clustering algorithms over several non-trivial
datasets, and to test whether they can achieve better clustering performance with a
smaller number of features.

Further, an extension to the novel PSO method will be investigated, although it does not
constitute a primary research goal.

1.3 Major Contributions

This project has a number of major contributions:

1. This project has developed the first method for simultaneous feature selection and fea-
ture weighting in clustering. In particular, a novel PSO method was established which
performs feature selection and feature weighting as a wrapper approach for a variety
of distance based clustering algorithms. Tests performed by clustering widely used
ellipsoid datasets show that the novel algorithm significantly increases clustering per-
formance, while using approximately half of the available features, when compared
with baseline methods.

2. This project has developed a novel statistical internal validation measure, the first mea-
sure utilising a statistical formulation of cluster separability. In particular, a clustering
specific internal validation measure was derived from Bayesian probability. The mea-
sure was shown to be able to avoid naive solutions that many distance based valida-
tion measures often produce on high dimensional data, improving clustering perfor-
mance in the majority of test conditions relative to baseline when used with the novel
PSO approach.

3. This project has developed a novel distance based internal validation measure which
extends existing distance based validation measures. In particular, empirical results
were used to inform the construction of a distance based internal validation measure
which combines two existing effective measures. This measure was shown to improve
clustering outcomes relative to baseline in all test conditions when used with the novel
PSO approach.

4. The existence and interpretation of naive solutions in clustering was investigated. In
particular, the behaviour of clustering algorithms in a feature selection and weighting
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framework was examined when using existing internal validation measures as optimi-
sation criteria. The investigation demonstrated that existing internal validation mea-
sures were not robust to naive solutions in this framework, returning cluster partitions
which trivially maximised the optimisation criteria while baring little resemblance to
the base truth.

Part of the research done in this project is under preparation to be submitted to the 2018
IEEE World Congress on Computational Intelligence/IEEE Congress on Evolutionary Com-
putation (WCCI/CEC2018).

1.4 Report Organisation

The remainder of this report is organised as follows. Chapter 2 provides background to
the current project, as well as detailing methods which will be used throughout the work.
Chapter 3 discusses the choice of datasets, details the dataset generation procedure, and
demonstrates some characteristics of the datasets. Chapter 4 addresses Goal 1, while Chap-
ters 5 and 6 together address goals 2 and 3. Chapter 7 presents the major conclusions from
this project as well as providing several avenues for future research.
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Chapter 2

Background

This chapter introduces both the background to the current project, as well as outlining
several algorithms which will form much of the basis for the current work. In particular a
broad overview of Machine Learning is presented, as well as work relating to specifically
to Clustering, the Curse of Dimensionality, Dimensionality Reduction, and Evolutionary
Computation. Further, algorithms and methods used directly in this work are presented,
and related work is considered. Where related work is considered we note that the cur-
rent project is novel, as no current method exists for feature selection and weighting in an
unsupervised learning context. Thus much related work is related only tangentially.

2.1 Machine Learning

Machine learning [2] refers to a collection of methods in which programs learn from data in
order to achieve some tasks, rather than being explicitly coded. The tasks to which machine
learning algorithms can be applied are numerous, but three main paradigms are presented
in the literature [43]:

• Supervised learning, where both inputs and target outputs are known,

• Reinforcement learning, where programs attempt to find outputs which optimise some
reward function, and

• Unsupervised learning, where target outputs are unknown, and the goal is to discover
some underlying pattern in a dataset.

Within each of these paradigms there are several notable algorithms. Some key algorithms
include artificial neural nets (ANNs), decision trees, Q-Learning, k-means clustering, and
Expectation Maximisation [2].

2.1.1 Supervised Learning

Supervised learning consists of algorithms which seek to match data to some known target
output [43]. The two broad categories of supervised learning tasks are classification and re-
gression. Classification seeks to map inputs to some known class label, and typically learns
by attempting to minimise the error rate of classification [43]. Regression, however, seeks to
map inputs to some real valued target output, and learns by minimising an error function
such as the mean-squared error [43].

Within different algorithms the notion of learning holds different meanings. For ex-
ample, ANNs often learn by finding the optimal parameters to a structurally pre-defined

12



mathematical function, whereas a decision tree is learned by finding both the correct struc-
ture and parameters for a model.

A goal for all supervised learning algorithms is to ensure that a model generalises to
unseen data. As such, datasets are normally split into training and test sets, with models
trained on training sets but assessed on the unseen data in the test set.

2.1.2 Reinforcement Learning

Reinforcement learning is a machine learning paradigm concerned with designing a deci-
sion making process such that an agent using that decision making process optimises some
reward criteria [48], and is frequently used when modelling agents in games [30]. A canon-
ical algorithm within reinforcement learning is Q-Learning. Traditional Q-Learning consid-
ers a series of states, with a set of potential actions which an agent can select that lead to
different successor states. It then attempts to learn which is the optimal action for each state
representation by assigning values to actions from prior experience [48, 30].

2.1.3 Unsupervised Learning

Unsupervised learning contains algorithms for a number of different tasks, all addressing
situations whereby a dataset has no known target output. This difference distinguishes
unsupervised learning from supervised learning, where target outputs from the dataset are
known [4].

There are numerous data mining tasks which utilise unsupervised learning techniques
[4], including text mining [23], approximating latent variable models [7], and clustering
[54, 18, 5]. A unifying quality among these tasks is that, as there is no known target output,
each of these tasks are seeking to extract meaningful information from a given dataset.

Text mining, for example, seeks to automatically extract novel information from different
written resources [23]. Latent variable models, on the other hand, assert that all datapoints
are being generated by some unseen latent generative probability distributions, and seek to
find these distributions [7].

An example of a latent variable model algorithm is Expectation Maximisation (EM). EM
is an unsupervised learning algorithm which, for some assumed number of generating dis-
tributions and a given probability function, finds parameters such that the distributions best
explain the dataset. These distributions are used to inform users as to the underlying prob-
abilistic structure behind the data without using class labels.

Within these tasks, however, clustering is among the most important [54, 18, 5].

2.2 Clustering

Given an unlabelled dataset clustering seeks to find a partitioning of the data such that dat-
apoints within partitions are related, and datapoints between partitions are comparatively
unrelated. Further, clustering aims to find partitionings which are non-trivial [3].

Given that the criteria for what can be considered a good partitioning is only defined
vaguely in the literature, several attempts have been made to formalise the assessment of
partitions. These assessments are named validation measures.

2.2.1 Validation Measures

Validation measures are used in the context of clustering to assess the validity of a given
set partitioning of a dataset. They can be separated into two categories, internal and ex-
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ternal validation measures [53]. Internal validation measures assess the validity of clusters
using only the data available to the clustering algorithm, such as spatial characteristics of
the clusters, whereas external validation measures make use of information external to the
clustering algorithm, such as the base truth. External validation measures are thus used to
provide a valuation of a partitioning when the base truth is known, and thus can demon-
strate more objectively the performance of a given clustering algorithm.

For this project several internal and external validation measures are researched and im-
plemented in order to assess their performance and to inform the choice for which internal
validation measure seems promising as an optimisation criterion for the novel PSO algo-
rithms on the chosen type of datasets. The implemented validation measures are listed and
described below.

2.2.1.1 Distance Based Internal Validation Measures

• Silhouette: the silhouette [42] of a given datapoint, i, is defined in terms of the func-
tions a(i) and b(i), where a(i) is the average distance between the datapoint i and all
other datapoints in the same cluster, and b(i) finds, for each other cluster, the average
distance between a datapoint i and all datapoints within that cluster, returning the
minimum of these values. Given these functions the silhouette of a given datapoint is
calculated as sil(i) = b(i)−a(i)

max(a(i),b(i)) , and the silhouette for a set of clusters is considered
to be the mean of silhouettes of all datapoints, reflecting on average how close points
tend to be to other datapoints within their cluster and how far away datapoints tend
to be from datapoints in the closest neighbouring cluster. The range of values possible
for this measure are [−1, 1] where higher values indicate better clusters.

• Connectedness: the connectedness [1] of a given datapoint i belonging to a cluster C
is defined using a given number, n, of closest neighbours, and a specified maximum
absolute distance m. Specifically connectedness is defined by the equation

conn(i) =
n

∑
k=1

{
min( 1

d(i,k) , m) i f k ∈ C

−min( 1
d(i,k) , m) i f k /∈ C

Thus connectedness looks at the closeness of neighbours of a given datapoint, assign-
ing a high positive value to neighbours which are close and within the same cluster,
and a high negative value to neighbours which are close but are not part of the same
cluster. The value m provides a practical limit on these values such that no one distance
can dominate the overall sum. The connectedness of a set of clusters is the mean con-
nectedness of all datapoints. The possible values for this measure are [−m ∗ n, m ∗ n],
with higher values indicating a more appropriate partitioning on a local level. For this
work parameters n = 5 and m = 10 were found to be suitable, giving outputs in the
range [−50, 50].

• Sparsity: the sparsity [1] of a cluster is a measure of how isolated datapoints are within
the cluster. Ideally within a cluster all points are close to at least one other datapoint
in the cluster. Thus, sparsity is defined as the maximum distance over a datapoint and
their nearest neighbour within a cluster, and a lower sparsity is considered beneficial.
Formally, given a cluster C and distance function d(x, y),

Sparsity(C) = max(min(d(p1, p2))),
where p1, p2 ∈ C, p1 6= p2

The sparsity of a set of clusters is considered to be the mean sparsity over all clusters.
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• Separation: the separation [1] of a cluster is a measure of how far away its boundary
is from all other clusters. Separation is formally defined as the minimum distance
between datapoints within a given cluster and all datapoints within other clusters,
and a higher separation is considered beneficial. Formally, given a cluster C, points
belonging to all other clusters U\C, and a distance function d(x, y),

Separation(C) = min(min(d(p1, p2))),
where p1 ∈ C, p2 ∈ U\C

The separation of a set of clusters is considered to be the mean separation over all
clusters.

2.2.1.2 Statistical Internal Validation Measures

While no specific statistical internal validation measures have been made for clustering
tasks, general model selection criteria have previous been used as internal validation mea-
sures in clustering with some success [20, 10]. In particular, the Bayesian approach known
as the Bayesian Information Criterion (BIC) has been used to compare different partition-
ings under a clustering framework [20, 10]. BIC is utilised when selecting between a finite
number of models, and is defined as:

BIC = ln(L̂)− ln(n)k
2

Where L̂ is the likelihood of data given the model, n is the number of datapoints, and k
the number of parameters on which the model depends [45]. Thus, when finding a model
maximising the BIC, one is finding a model which explains the data well but avoids exces-
sive complexity. However, this measure ignores an important aspect of clustering, namely
that datapoints should not only be explained well by the cluster they are assigned to, but
also not be explained well by neighbouring clusters.

2.2.1.3 External Validation Measures

External validation measures are used to evaluate how well cluster partitions relate to the
base truth. Thus, external validation measures provide a more objective way of measuring
the performance of clustering algorithms, removing the subjectivity in cluster analysis noted
by Backer and Jain [3]. However, they are only usable on datasets where the base truth is
known, such as on classification datasets and synthetic clustering datasets. Two key external
validation measures used in cluster analysis are:

• Purity: the purity [1] of a cluster is defined as what fraction of points within a cluster
belong to the majority label for that cluster. Ideally clusters contain only datapoints
from one class, thus having a purity of 1. Formally given a cluster C and a set true
labels L, which itself contains a set of points for each label, this can be defined by
Purity(C) = 1

|C|maxl∈L(C
⋃

l). The purity of a set of clusters is defined as the mean
purity over all clusters.

• F-Score: the F-Score of a cluster is defined as the square root of the product of precision
and recall, and tends to be preferred over purity because the consideration of recall
prevents trivially high values when the number of clusters approaches the number of
instances. Specifically, in clustering, pairwise comparisons are made between every
point in the dataset in order to find the number of True Positives (TP), False Positives
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(FP), and False Negatives (FN). For each pairwise comparison a TP is said to be where
two points share a label and are also in the same cluster, a FP is when two points
are within the same cluster but do not share the same label, and a FN is when two
points share a label but are not in the same cluster [33]. We then define precision
and recall as is standard, recall = #TP/(#TP + #FN), precision = #TP/(#TP + #FP).
Giving us our final definition of the F-Score as defined by Fowlkes and Mallows [19],
F =

√
precision ∗ recall.

The F-Score is used as the key external validation measure in the current project, and informs
claims as to the objective performance of clustering algorithms.

2.3 Distance Metrics

Distance metrics are used in clustering to formalise the notion of distance (or dissimilarity)
between two points. Intuitively, points with low distance between each other should nor-
mally lie within the same cluster, and points which have comparatively high distance be-
tween them should normally lie within different clusters, because they have values which
are less similar.

Distance metrics, formally, are functions mapping two vectors of equal length to a sin-
gle non-negative real-valued output, formally notated d : X × X → [0, ∞), such that the
following properties hold:

• d(x, x) = 0,

• d(x, y) = d(y, x), and

• d(x, y) ≤ d(x, z) + d(z, y)

Examples of commonly used distance metrics in clustering include the Manhattan distance
(∑n

i=1 |pi − qi|) and Euclidean distance (
√

∑n
i=1(pi − qi)2), where p and q are vectors of di-

mension n.

2.4 The Curse of Dimensionality

The Curse of Dimensionality is a term applied to group of problems that arise when working
with high dimensional data. One aspect of the Curse of Dimensionality defined with respect
to distance metrics in higher dimensional space has been formalised by Beyer et al.[6] which
is the aspect of the Curse of Dimensionality which this project hopes to address.

The formalisation of this property put forward by Beyer et al. [6] hinges on the fol-
lowing observation, which was proven in the original work: for many distributions of di-
mension d, given an arbitrary point in the dataset x and finding a point y which satisfies
argmaxy(d(x, y)) and a point z which satisfies argminz(d(x, z)), the limd→∞

dist(x,y)−dist(x,z)
dist(x,z) →

0. This is to say, while all distances tend towards infinity as dimensionality tends to infinity,
the maximum and minimum distance between all points tends towards equidistance. It was
also found that strong evidence for this behaviour can be seen by the time d = 10 for many
synthetic and real-world datasets [6].

This causes a problem in the context of clustering because it implies that distance func-
tions cease to provide meaningful insight about how related two datapoints actually are in
clustering problems as sufficient dimensionality. Research has supported this implication,
showing that this aspect of the Curse of Dimensionality significantly impacts the effective-
ness of clustering algorithms [47].
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2.5 Evolutionary Computation

Evolutionary Computation (EC) denotes a group of population based algorithms broadly
inspired by biological behaviours, which are widely used for global optimisation and tend
to make very few assumptions about the properties of the data on which they operate, while
being robust to local optima.

Two major paradigms present themselves in EC literature [56], namely evolutionary al-
gorithms and swarm based algorithms, although many algorithms which fit into neither of
these paradigms have been proposed, such as learning classifier systems [56].

Evolutionary algorithms tend to create a random initial population of candidate solu-
tions for the target problem and then perform the following operations until some termina-
tion criteria is met [56]:

• Elitism, where individuals are created by copying members from the previous popu-
lation, with a bias given to copying ’high fitness’ members,

• Mutation, where individuals have characteristics randomly changed, in order to ex-
plore the search space of solutions more widely, and

• Crossover, where two individuals ’breed’, producing two new members which share
attributes of both parents.

The most widely used evolutionary algorithms are genetic algorithms (GAs) and genetic
programming (GP). While both of these methods utilise a framework broadly agreeing with
the above, they contain very different representations of individuals in the population. GA
treats candidate solutions as bit-strings, which are interpreted according to some user de-
fined function, whereas GP evolves program trees, which take inputs and returns some
value. This distinction leads to many conceptual and practical differences between GA and
GP, a key point being that GA is defined on bit-strings of a fixed length, while GP can create
program trees of various sizes.

Swarm based algorithms, on the other hand, tend also to begin with a random popu-
lation of candidate solutions, but instead of the three operators used in evolutionary algo-
rithms, they at each iteration of the algorithm update each member of the candidate pop-
ulation directly [56]. Normally these updates are to push each candidate solution closer to
where promising solutions have been found by other members, but some stochastic move-
ment is also frequently used to ensure sufficient exploration of the search space.

2.5.1 Particle Swarm Optimisation

Particle Swarm Optimisation [8] (PSO) is an EC, swarm based, algorithm inspired by social
behaviour in animals, namely bird flocking and fish schooling. Specifically it creates a pop-
ulation of candidate solutions, called the swarm, where each candidate solution, denoted a
particle, is a vector. PSO then seeks to find an optimal solution in the given search space
by balancing stochastic movement, local knowledge of the best solution so far, and global
knowledge of the best solution so far.

Specifically, a random d dimensional particle xi ∈ Rd is first assigned a random velocity
vi ∈ [−vmax, vmax], where vmax is a user specified maximum velocity. Throughout the algo-
rithm each particle maintains a record of its previous best position pbest and has access to
the recorded global best position gbest. For each iteration of the PSO algorithm the follow-
ing updates are made, given a user specified inertia weight ω, a user specified acceleration
coefficient for pbest and gbest, denoted c1 and c2 respectively, and a function r which returns
a uniform random value in [0, 1]:
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vt+1
i = ωvt

i + r1c1(pbesti − xt
i ) + r2c2(gbesti − xt

i ) (2.1)

xt+1
i = xt

i + vt+1
i (2.2)

Once this update is complete for all particles in a given iteration values for pbest and
gbest are updated.

After the maximum number of iterations have been reached, or some other termination
criterion has been met, the value for gbest is returned as the solution.

2.6 Dimensionality Reduction

To address the curse of dimensionality in both machine learning and broader data analysis
several algorithms have been developed which reduce the dimensionality of a dataset.

2.6.1 Feature Selection

Feature selection methods are a broad class of methods utilised to reduce the dimensionality
of datasets [24]. Feature selection refers to the task of finding a subset of features from the
original feature set in such a way that the dimensionality of the dataset is reduced, with the
goal of improving results for a given task using this subset relative to using the full set of
features.

The search space of feature selection methods consists of all possible subsets of features.
For a dataset with dimensionality d this means that there are a total of 2d possible feature
subsets. Accordingly, many early feature selection methods utilised local search to find a
good subset of features. The two main approaches for local feature selection search are
sequential forward selection (SFS)[52], sequential backward selection (SBS)[36]. SFS begins
with an empty feature set and, at each iteration of the algorithm, adds another feature to
this subset according to a pre-defined measure until the algorithm terminates. SBS mirrors
this approach but starts from the full feature sets and removes one feature at each iteration.
In both of these cases the runtime is reduced from the exhaustive O(2d) to O(d2), or O(dn)
where a maximum number of iterations n is specified, making sequential feature selection a
tractable approach to feature selection.

Further developments of feature selection have been demonstrated as extensions of the
above ideas. In particular floating search methods [41] were demonstrated to generally out-
perform SFS, SBS, as well as some other extensions to SFS and SBS [44]. Floating search
methods, as with SFS and SBS, start from either the set of all features or an empty set of
features, however they contain steps at which they can both add beneficial features and re-
move the least beneficial features from the feature subset. Thus these algorithms incorporate
elements of both forward and backward sequential selection [41].

However, local searches, even floating search methods, are prone to finding suboptimal
feature subsets, as they naturally omit many interactions between features. Further, it has
been shown that performing feature selection via local search can never guarantee optimal-
ity in the general case [51]. Thus much recent literature on feature selection methods have
shifted to global search techniques, the most promising of which derive from Evolutionary
Computation (EC).

EC methods for feature selection are typically used in a supervised learning context [56].
Specifically, the use of EC methods to perform dimensionality reduction in classification
tasks has been well established in the literature, with the most common methods being
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GAs and PSO [56]. Further, within the literature regarding the use of GAs and PSO to per-
form feature selection in classification, these techniques are predominantly used as wrapper
methods [56].

The standard representation of candidate feature sets in both GAs and PSO is a binary
string, with the length of this binary string equal to the total number of features. For each bit
in the bit string, a value of one indicates that the corresponding feature has been selected,
whereas a value of 0 indicates that a feature has been excluded.

While both GAs and PSO, when used in this context, tend to improve classifier accuracy
while using a reduced feature set, by intuition GAs are likely to outperform PSO when
a dataset has groups of interacting features. Thus is due to the building blocks in GAs
being suited to combinatorial problems, whereas PSO tends to be more suited to problems
in which the search space of solutions is continuous [56].

PSO, when used as a feature selection method, has improved outcomes and interpretabil-
ity on classification tasks in complex biological datasets [11] and also on widely used ma-
chine learning datasets [51].

2.6.2 Feature Construction

Feature construction is another key method used to reduce the dimensionality of datasets.
Feature construction refers to methods which construct a feature or features as a function of
the original features [39]. These can reduce the dimensionality of a dataset by creating new
features for the data which are combinations of only a subset of the original feature set, and
then using only these constructed features to perform the original task, e.g. classification.
A canonical example of a feature construction technique is Principle Component Analysis
(PCA). PCA is a foundational statistical feature construction method used to reduce the
dimensionality of the feature set of a dataset while retaining as much information in the
dataset as possible. PCA works by constructing a new basis for the dataset according to
which weighted combinations of features most account for variance in the dataset [40]. PCA
has a long history of use as a data preprocessing technique, but significantly reduces the
interpretability of results, as the new basis for the dataset fundamentally changes the feature
space without providing a clear idea of the relationship between specific original features
and the outcome. This means that PCA is less useful in unsupervised learning tasks where
interpretability is a goal, such as pattern discovery and data mining. Further, as PCA tries to
find a basis such that each principle component accounts for as much variance in the data as
possible it can encounter difficulties where some dimensions of the data hold high variance
noise.

Further the search space for constructed features can be arbitrarily large, and thus local
optima can be problematic for feature construction methods in general.

2.6.3 Filter, Wrapper, and Embedded Methods

All dimensionality reduction algorithms can be categorised broadly into three overall method-
ologies: filter, wrapper, and embedded. This categorisation reflects how feature subsets or
constructed features are being assessed during selection or construction.

Filter methods are dimensionality reduction techniques which apply dimensionality re-
duction to the dataset according solely to properties of that dataset [56]. Filter methods tend
to be general, producing feature sets that are applicable to many different algorithms, and
comparatively computationally inexpensive [56]. However, this generality means that fil-
ter methods do not normally create feature sets which are optimal for a given task, because
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they are unable, by definition, to assess how the selected or constructed features will interact
with specific algorithms.

Wrapper methods, however, apply dimensionality reduction according to the outcomes
of feature sets when they are actually used by a chosen algorithm for a given task. Thus,
wrapper methods tend to be specific, producing feature sets which are optimised for a spe-
cific algorithm and task. Further, wrapper methods tend to be computationally expensive,
requiring that each potential feature set be utilised for the task at hand in order to assess its
performance. However, wrapper methods, accordingly, tend to outperform filter methods,
due to selecting or creating feature sets which best suit a given environment.

Embedded methods refer algorithms which, as part of their design, automatically per-
form dimensionality reduction. Because of the variety in algorithms which are said to utilise
embedded dimensionality reduction methods it is difficult to ascribe specific performance
characteristics to this category, however it has been indicated [44], that these methods tend
to produce feature sets with middling generality, with middling optimality, and at middling
computational cost. An example of such an algorithm is genetic programming in classifica-
tion tasks, which naturally selects a subset of features when constructing solutions.

2.7 Related Work

This section describes a number of important clustering algorithms, and considers existing
work which is important to the current project.

2.7.1 Clustering Methods

In the literature there are numerous clustering algorithms, both non-EC based and EC based
[28, 18]. This subsection introduces a relevant taxonomy for non-EC clustering algorithms,
which allows the current work to ensure that testing done utilising the novel method does
so using a variety of established clustering algorithms, as per Goal 3. Existing methods re-
garding EC based clustering algorithms are also introduced, due to the relevancy of existing
work done on encoding schemes for these EC algorithms.

2.7.1.1 Non-EC Clustering Methods

In order to demonstrate a general methodology as per Goal 3, several distance based clus-
tering algorithms need to be considered. Fahad et al. [18] propose a taxonomy for clustering
algorithms consisting of the following five overall classes:

• Partitioning-Based,

• Hierarchical-Based,

• Density-Based,

• Grid-Based, and

• Model-Based

Grid-based and model-based are statistical clustering techniques [18], and thus are not ap-
plicable to this project, of which a key motivation is addressing issues relating to distance on
high dimensional datasets. Further, the current work proposes the addition of an appropri-
ate graph-based clustering algorithm for additional comparison. We thus propose the use
of the following four algorithms:
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1. Partitioning-based: Affinity Propagation [21]

2. Hierarchical-based: Complete linkage agglomerative clustering [12]

3. Density-based: DBSCAN [17]

4. Graph-based: KNN-neighbour clustering [50]

Each of these will be described in detail below.

Affinity Propagation

Affinity Propagation is a medoid-based clustering algorithm. Medoids are datapoints which
are treated as exemplars for a cluster, and datapoints are assigned to clusters based on sim-
ilarity to medoids. Affinity Propagation automatically selects both the number of medoids
to choose for a dataset, and which datapoints will act as medoids. Affinity Propagation has
been demonstrated to improve clustering outcomes relative to K-Means on several compli-
cated datasets, including high dimensional biological datasets, computer vision datasets,
and routing datasets [21].

Affinity Propagation finds clusters based on similarity between points, rather than dis-
tance, but the convention of using negative squared Euclidean distance as similarity is well
established, making this a suitable algorithm for this project.

The specific method for Affinity Propagation, given a similarity matrix S, is:

1. Two square matrices R and A are initialised to arrays of zeroes, where Rx,y indicates
how appropriate datapoint x is to act as a medoid for datapoint y, and Ax,y indicates
how appropriate it is for datapoint x to pick y as a medoid considering the appropri-
ateness of y as a medoid for other points,

2. Until convergence criteria are met, for each iteration and all pairwise combinations of
datapoints the following updates take place:

(a) Rx,y ← Sx,y −maxz 6=x{Ax,z + Sx,z}
(b) Ax,x ← ∑y 6=x max(0, r(x, y))

(c) For Ax,y where x 6= y, Ax,y ← min(0, r(y, y) + ∑z/∈{x,y} max(0, Rz,y))

3. Finally medoids are extracted from the matrices R and A, where a datapoint x is con-
sidered a medoid where Rx,x + Ax,x > 0, and points are assigned to a cluster corre-
sponding to their nearest medoid.

The significance of the term Rx,x + Ax,x > 0 is that it indicates that it is sufficiently appropri-
ate for a datapoint x to act as a medoid for itself, and sufficiently appropriate for x to assign
itself to a cluster for which it is the medoid.

KNN-Clustering

The KNN clustering algorithm is a graph-based clustering algorithm which performs the
following steps given a user specified K ∈N [50]:

1. Each point is connected to the K points which are closest to it, according to some
distance metric, via an undirected edge, and

2. Clusters are then created by assigning points to clusters such that for each two points
if a path exists between them then they are assigned to the same cluster.
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For the datasets used in this research a K value of 3 was found to create the best clusters
according to the validation measures used, and so the 3NN clustering algorithm acts as the
graph-based clustering algorithm for this project.

Density-based Spatial Clustering of Applications with Noise (DBSCAN)

DBSCAN [17] is a popular density based clustering algorithm which can find arbitrarily
shaped clusters of relatively uniform density given a user specified ε ∈ R+, minNeighbours ∈
N. Specifically using a notion of core points, which are datapoints with at least minNeighbours
datapoints within ε distance of them, the following method is used:

1. All datapoints within ε of a core point are said to be directly reachable from that core
point,

2. Any datapoint which is directly reachable from a core point is said to be in the same
cluster as that core point, and

3. Any datapoint which is not within ε distance of a core point is said to be an outlier,
and is not treated as belonging to any cluster.

DBSCAN is unique among the algorithms presented here for the final property that dat-
apoints can remain unlabelled, which requires special consideration in the context of our
validation measures. Specifically, with regards to the F-Score, datapoints designated as out-
liers by DBSCAN contribute to the False Negative count, but not the False Positive count.

Agglomerative

Agglomerative clustering methods are a standard clustering method where, given a speci-
fied number of clusters, K ∈N, the following method is performed:

1. At the start of the algorithm each datapoint is treated as a singleton cluster, and

2. Clusters are gradually merged according to some criteria until the number of clusters
is K.

The specific criterion used in this work is complete linkage, whereby the clusters merged
at each step are those with the least maximum distance between all datapoints in the clus-
ters. Agglomerative clustering using this criterion can find arbitrarily shaped clusters, but
is highly reliant on a priori knowledge regarding the true number of clusters.

2.7.1.2 EC Based Clustering Methods

The clustering literature also presents several cases where EC techniques are used to per-
form clustering directly. The most common EC techniques used to cluster directly are GAs
and PSO [16, 28]. A survey put forward by Hruschka et al. [28] describe three common
encoding schemes which are used in most of these algorithms:

• Centroid based encoding schemes, where each candidate solution represents the co-
ordinates of the centroids which are used to partition the dataset according to which
centroid is the closest to each datapoint. These encoding schemes require the num-
ber of clusters, K, to be predefined, and each candidate solution is then a vector of
size Kd, where d is the dimensionality of the dataset. For example, on a two dimen-
sional dataset, with K = 2, the candidate solution [1.0, 0.8,−2.0,−1.0] indicates two
centroids, one based at position (1.0, 0.8) and the other at position (−2.0,−1.0). Points
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would then be partitioned into two clusters according to which of these centroids they
were closest to, normally using Euclidean distance.

• Medoid based encoding schemes, where each candidate solution represents whether
or not given instances have been selected as medoids. Thus, for a dataset with n in-
stances, each candidate solution is a vector of length n. Where these representations
are continuous an interpretation of a candidate solution involves defining some value
above which points are treated as medoids. Where representations are binary this nor-
mally corresponds to a value of one representing a point being a medoid. After this
interpretation, the dataset is partitioned according to which medoid datapoints are
closest to, usually according to Euclidean distance, with medoids themselves trivially
being their own nearest neighbour.

• Labelling based encoding systems again use candidate solutions of length n, where n
is the number of instances in the dataset, but each value in the vector corresponds to
an integer cluster label for a point.

These works, while distinct in aim from the current project, provide evidence of the versatil-
ity of encoding schemes in EC algorithms. We note, however, that the non-EC clustering al-
gorithms presented are both more researched at the present time and have presented strong
results across a variety of datasets [18, 54]. Further, the encodings here do not improve the
interpretability of partitions and do not address fundamental concerns regarding the Curse
of Dimensionality, which is the second Goal of the current project. We further note that
these encoding schemes, if one assumes that n >> d, represent very large search spaces,
which can be reduced by encoding the EC algorithm directly for dimensionality reduction
and using it as a wrapper approach for non-EC clustering methods.

2.7.2 Feature Selection in Clustering

Feature selection in clustering is a currently a small domain of research relative to feature
selection in classification [56], and a survey presented in 2005 could find no uses of EC for
feature selection in clustering [34]. However, there is some recent work into the use of EC
for feature selection in clustering.

This section outlines prior work regarding non-EC methods for feature selection in clus-
tering, EC methods for feature selection in clustering, and an existing work on feature
weighting in clustering. Providing a brief overview of limitations in the works and stat-
ing how those limitations are addressed by the current project.

2.7.2.1 Feature Selection in Clustering

Dy and Brodley [14] investigated the use of Sequential Forward Selection (SFS) as a wrapper
method for an Expectation Maximisation (EM) algorithm, assigning data to the most likely
cluster when computing external validity. Class error was used as an external valuation
metric. Class error can be considered an inverse to purity, namely it is optimal when all
clusters contain only one class, in which case class error = 0.0. Class error, like purity, is
trivially optimal when each datapoint is assigned to a singleton cluster.

During the feature selection process, Dy and Brodley [14] compared two different fea-
ture selection criteria: one which selected features to maximise separability, and the other
which selected features to maximise the likelihood of the data given the resulting partition.
Experiments were performed on synthetic and real-world datasets. The synthetic datasets
consisted of three two-dimensional spherical Gaussian datasets, consisting of two, three,

23



and four Gaussian clusters. The real-world datasets consisted of an ionosphere dataset (di-
mensionality 34) and a pre-processed HRCT-lung dataset [15] (dimensionality 125).

On the synthetic datasets Dy and Brodley [14] found that using separability as feature
selection criteria improved external validity, but that using maximum likelihood as selection
criteria made external validity worse than the baseline EM algorithm. On the real-world
datasets all test conditions demonstrated worse external validation scores than the baseline
EM algorithm.

We note several limitations to this work: the work utilised an external validation mea-
sure which does not penalise for finding too many clusters, the work failed to improve
external validity of partitionings when dimensionality was greater than 2, the statistical in-
ternal validation measure did not improve external validation in any tests, and the synthetic
datasets chosen were very simple, being both hyperspherical and of low dimensionality.

2.7.2.2 Feature Weighting in Clustering

Modha and Spangler [37] examined feature weighting in k-means clustering on relatively
low dimensional datasets.

Specifically a variant on k-means clustering was created, named convex k-means, that
assumed all clusters were convex. During clustering a weight vector α was calculated, based
on information theoretic criteria with regards to the clusters, and was designed to minimise
intra-cluster sparsity and maximise inter-cluster separation.

Because α was calculated in closed form, there were several restrictions placed on it.
Namely, for a dataset with dimensionality d, ∑d

i=1 αi = 1, and ∀i∈{1,..,d}αi ≥ 0. While the lat-
ter means that the algorithm can theoretically remove features from the dataset, in practice
no features were ever assigned a weight of 0, and it was never assessed as to whether or not
the closed form calculation could ever lead to such a situation.

Modha and Spangler [37] tested their method on a number of datasets with dimensional-
ity less than three, specifying various values for k (i.e. the number of clusters for the convex
k-means algorithm). They found that in all cases the weighting improved their internal
validation measures, finding better quality clusters for all specified k.

The work by Modha and Spangler [37] is highly novel and with positive results, but also
demonstrates some limitations. Firstly, the convex k-means algorithm specifically main-
tains the original drawbacks present in k-means clustering, namely being highly sensitive
to initialisation, requiring a predefined k, and assuming that all clusters are convex (i.e. hy-
perspherical). Secondly, the convex k-means algorithm, in calculating optimal weightings,
does so as a closed form system of equations, which have not been demonstrated as tractable
on datasets with high dimensionality (the original work utilised only datasets with dimen-
sionality 2 and 3). Thirdly, the set of considered feature weightings only contains sets of
feature weights such that the sum of all weights equals 1, a restriction imposed to ensure
that optimal feature weights are calculable in closed form. The effect of this constraint is not
examined in the original work. Lastly, the experimental design used in the work did not
include any external validation measures. External validation is considered the gold stan-
dard within clustering, and is highly important if an algorithm is to be brought into usage
outside of experimental contexts.

2.8 Summary

This chapter provided an overview of the theoretic background and specific algorithms re-
lated to the current project. In particular the clustering algorithms used in this project were
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introduced, some works regarding the use of EC for clustering were examined as tangen-
tially related work, and key works showing the separate use of feature selection and feature
weighting in the context of clustering were described.

Where relevant, key limitations of prior work were also identified, and we note that the
work in this project extends the existing literature in the following ways:

1. It is the first work to attempt to simultaneously select and weight features in the con-
text of clustering,

2. Prior work on these individual tasks in clustering has used either a poor external val-
idation measure or performed no external validation on results,

3. Where feature selection has been performed in clustering and (limited) external vali-
dation has been performed, high dimensionality has damaged results, and

4. Where feature weighting has been performed in prior work it has been a closed form
calculation with many assumptions, and has been examined only on low dimensional
datasets.

Thus this chapter indicates that this project is novel in several ways in its goal to utilise
PSO to perform feature selection weighting simultaneously in a way which improves the
validity of found partitions, according to state-of-the-art external validation measures, and
interpretability in the context of clustering. Further, we note a lack of substantial work
related to the use of EC for feature selection in clustering.

As no work involving the evolution of specific distance functions has been presented,
the extension to our main method can be said to extend the literature more broadly.

25



Chapter 3

Datasets

3.1 Introduction

This chapter details the selection of clustering datasets. In particular the criteria for selecting
datasets in this project are stated, and details for generation of datasets satisfying these
criteria are explained. Lastly, example datasets are analysed in order to provide intuition
for the significance of results in the current project.

3.2 Choice of Dataset

The choice of datasets for this project is based primarily on two criteria. The first criterion is
that the chosen datasets should be non-trivial, such that standard clustering algorithms are
unable to reliably discern the base truth from the dataset. To facilitate this non-axis aligned,
non-hyperspherical datasets of arbitrary orientation are desired. The second criterion is
that the datasets chosen should have established use in the wider clustering literature, to
improve confidence in results.

While in low dimensions datasets generated using Gaussian distributions with high co-
variance can create clusters which satisfy our first criterion, the requirement that datasets be
non-spherical tends to fail for Gaussian distributions at sufficient dimensionalities [25]. In
particular clusters generated in this way tend to be hyperspherical because high variance in
any single direction tends to have negligible effect on distance when there are very many
dimensions [25].

The current project thus uses datasets generated through a method put forward by
Handl and Knowles [25], which uses a genetic algorithm combined with statistical data gen-
eration to overcome this problem. Further, datasets generated using this method are widely
used in the literature [26, 27, 31], satisfying our second criterion. This method of dataset
generation is described below.

3.3 Dataset Generation Method

Handl and Knowles [25] specify a method of dataset generation, which utilises genetic
algorithms and statistical data generation to create non-axis aligned, non-hyperspherical
datasets of arbitrary orientation.

Specifically, four parameters are considered for each cluster:

1. The origin, which is treated as the first focus,

2. The interfocal distance, generated in U[1.0, 3.0],
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3. The orientation of the major axis, chosen uniformly from all possible orientations, and

4. The maximum sum of Euclidean distances between the two foci, generated in U[1.05, 1.15].

The method is then:

1. For each cluster, datapoints are generated at a Gaussian distributed distance from a
uniformly random point on the major axis in a uniformly random direction, being
rejected if they lie outside the boundary.

2. After all datapoints are generated, with origin set to 0, ..., 0, a genetic algorithm is used
to move the origins such that a cost consisting of deviation of the entire dataset, plus
a penalty term for any overlapping clusters, is minimised.

This tends to generate ellipsoid clusters which are non-axis aligned and of arbitrary orien-
tation. Further, while the resulting dataset is arranged compactly, clusters still tend to be
separable from other clusters in the dataset.

Some notable characteristics of the datasets selected for the current work can be found
in Table 3.1, which also includes the Silhouette and Connectedness scores under perfect
partitioning (according to the base truth).

Table 3.1: Characteristics of Ellipsoid Datasets

D #Clusters Silhouette Connectedness #Instances Smallest Cluster Largest Cluster
2 4 0.59 17.56 219 25 78
2 10 0.42 15.98 632 15 122

50 4 0.34 29.84 246 14 90
50 10 0.39 28.90 805 34 124
100 4 0.41 31.51 254 32 93
100 10 0.41 29.80 747 34 103

Note: D represents Dimensionality of the dataset.

We note that all datasets contain clusters which, on average, have higher inter-cluster
distance than intra-cluster distance with respect to the base truth, as shown by a positive
Silhouette value for all datasets. We also note that cluster size varies greatly within datasets,
with the largest cluster being several times larger than the smallest cluster in all datasets.
Although the Silhouette value is positive for each dataset, these properties indicate that the
datasets are not easily clusterable.

3.4 Dataset Analysis

To demonstrate further characteristics of the datasets, we look at the distribution of data-
points within clusters along specific axes.

Namely, from the dataset containing 100 dimensions and four clusters, we select select
two clusters for examination. For these two clusters we find the minimum, median, and
maximum variance axes, and then plot the distribution of position along these. The his-
tograms for datapoint placement on these axes can be found in Figures 3.1 and 3.2.
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(a) Minimum Variance Axis (b) Median Variance Axis (c) Maximum Variance Axis

Figure 3.1: Properties of Axes in First Cluster

(a) Minimum Variance Axis (b) Median Variance Axis (c) Maximum Variance Axis

Figure 3.2: Properties of Axes in Second Cluster

In interpreting these plots we note that, while most axes appear to be Gaussian dis-
tributed with a random mean and variance. As the variance increases the rejection criteria
in the cluster generation can make some high variance axes more uniformly distributed.
Further, where the randomly chosen major axis happens to be strongly aligned with a spe-
cific axis that axis is entirely uniformly distributed.

3.5 Summary

This chapter outlined the desired traits of datasets for the current project, identifying that
they should be sufficiently complex, such that the baseline algorithms cannot naively find
perfect clusters, and widely used in the existing literature.

Suitable datasets proposed by Handl and Knowles [25] were identified and the method
of generating the datasets explained before an analysis of clusters in one such dataset was
presented.
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Chapter 4

Optimisation Criteria

4.1 Introduction

This chapter details and justifies the two novel optimisation criteria that fulfill the first ob-
jective of this project. Existing validation measures are examined and considered as opimi-
sation criteria, but are shown to lead to naive solutions. The novel distance based valida-
tion measure, Combined Silhouette and Connectedness (CSC) is shown to be more robust
to naive solutions, and evidence for choices made regarding its design are presented. The
novel statistical validation measure, the Bayesian Clustering Ratio (BCR) is derived, and is
unique in its inclusion of a statistical measure of separability.

4.2 Chapter Goals

Existing distance based validation measures tend to act as poor optimisation criteria under a
feature selection and weighting framework, and where statistical validation measures have
been used they have not included a notion of separability. This chapter aims to develop two
novel validation measures which are suitable as optimisation criteria, while demonstrat-
ing the behaviour that justifies the need to create new internal validation measures for this
project. This chapter approaches this in the following way:

• Section 3 will examine naive solutions, and demonstrate clearly that existing distance
based validation measures are prone to returning naive solutions when used as opti-
misation criteria, justifying the need for a novel distance based validation measure,

• Section 4 will present the process through which the novel distance based measure,
CSC, was constructed, including results supporting choices made, and

• Section 5 will present the statistical foundation for the novel statistical validation mea-
sure, the BCR, explaining how it was derived and how a notion of statistical separa-
bility is attained.

Thus sections 4 and 5 can be said to satisfy Goal 1 in this project.

4.3 Naive Solutions

Naive solutions refer to partitionings which satisfy some internal validation measure, but
are fundamentally uninteresting. For example, if a clustering algorithm returns only two
clusters where the base truth contains many clusters, then this is considered a naive solution.
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To examine the occurrence of naive solutions, Particle Swarm Optimisation for Feature
Selection and Weighting (PSO-FSW), introduced formally in Chapter 5, is used to select
features and weights while optimising according to existing internal validation measures,
using the 3NN Clustering algorithm. The preliminary results show that most of the internal
validation measures produce naive solutions on datasets with dimensionality as low as 2.
The one measure for which this was not the case was the Silhouette measure.

Further investigation demonstrated the the Silhouette measure when used as a sole op-
timisation criteria also finds naive solutions as dimensionality increases.

Figure 4.1, demonstrates the the partitions that were found when performing feature
selection and weighting on a two dimensional dataset with four clusters. In Figure 4.1 colour
represents the assigned cluster, shape of datapoints the actual label, and the position of each
point is the position after feature selection and weighting.

(a) Baseline (Standard 3NN) (b) Silhouette (c) Connectedness

(d) Sparsity (e) Separation

Figure 4.1: Results of Clustering with different Optimisation Criteria

Here we note some interesting results for sparsity and separation, the only used internal
validation measures which do not balance inter-cluster and intra-cluster characteristics. In
particular we note that sparsity has returned a set of clusters which have had one feature
removed, and the remaining feature scaled close to 0, such that the resulting clusters are
arbitrarily dense despite having minimal value as interpretable clusters. Optimising for
separability has led to the creation of exactly two clusters such that the distance between
these clusters is maximal. It is reasonable to believe that these behaviours would occur
regardless of the particular datasets used.

In these tests the Silhouette measure was the only internal validation measure which,
when used as optimisation criteria, improved how closely the partitions reflected the base
truth. To examine whether or not the Silhouette measure avoided naive solutions in higher
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dimensions, trials were run on datasets with dimensionality 50 and 100 using the 3NN-
Clustering algorithm.

These results are presented in Table 4.1.

Table 4.1: F-Score and Clusters Found using the Silhouette measure as Optimisation Crite-
rion

Dimensionality Number Clusters F-Score Silhouette Number of Clusters Found
50 4 0.48 0.67 2
50 10 0.34 0.75 2
100 4 0.56 0.71 2
100 10 0.96 0.41 9

As can be seen in Table 4.1, in higher dimensions the optimisation using the Silhouette
measure is also prone to naive solutions, finding two cluster solutions which optimise the
Silhouette measure on three of four datasets. This supports the motivation for Goal 1 of the
current project.

4.4 Distance Based - Combined Silhouette and Connectedness (CSC)

The process for deriving the CSC validation measure was done in several major stages. First,
the four non-EC clustering algorithms detailed in section 2.7.1 were applied to a number of
datasets with the same number of clusters and dimensionality as the datasets selected for
testing. Secondly, the resulting partitions for each of these trials were assessed using the
validation measures outlined in 2.2.1. To see how well each of these measures acted as an
indicator for the base truth, particular attention was given to how well each internal valida-
tion measure correlated with the F-Score. Finally, after this assessment, the most promising
internal validation measures were combined into the new CSC measure.

Lastly, this section details the choice within the CSC measure regarding whether or not,
during optimisation, to appraise partitions using the weighted feature subset or the full
unweighted feature set.

4.4.1 Evaluating Internal Validation Measures

In order to evaluate the performance of internal cluster validation measures two cases are
looked at:

1. The correlation between validation measures when using standard clustering algo-
rithms to partition datasets, with particular focus on how internal validation measures
correlate to F-Scores.

2. The resulting clusters when optimising a distance function for the internal validation
measures on a low dimensional dataset.

We note that partitionings returned by clustering algorithms are used in the first assessment,
rather than the base truth, so that the F-Score is not trivially perfect, i.e. we wish to see how
internal validation measures are affected by poor partitioning as well as good partitioning.
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4.4.1.1 Correlational Analysis

Each of the four clustering algorithms was run on datasets with the same dimensionality
and number of clusters as those outlined in Table 3.1, which were generated using the same
method as outlined in Chapter 3. For each algorithm and dataset partitions were assessed
using the validation measures outlined in Chapter 2, with these results recorded.

These results were then correlated in order to infer which internal validation measures
best reflected the goodness of clusters according to external validation measures, particu-
larly the F-Measure which penalises having more clusters than actually appear in the data.
The correlation between validation measures can be seen in Table 4.1, where the correlation
between F-Score and internal validation measures are bolded.

Table 4.2: Correlation Matrix of Validation Measures

F-Score Purity Silhouette Connectedness Sparsity Separation
F-Score 1.00 0.93 0.72 0.46 -0.41 -0.06
Purity 1.00 0.79 0.52 -0.43 -0.08

Silhouette 1.00 0.27 -0.36 0.31
Connectedness 1.00 -0.63 -0.73

Sparsity 1.00 0.57
Separation 1.00

We note that Silhouette and connectedness have the highest correlation to F-Scores from
the internal validation measures, and thus look promising as optimisation criteria to max-
imise F-Score. Further, Silhouette and connectedness have relatively low correlation to each
other, implying that while they are both somewhat indicative of F-Scores they are related to
different properties of resulting clusters.

We also note that, as intuition would imply, sparsity is negatively correlated to F-Scores
as sparsity is not a desirable feature within clusters. Lastly, we note that separation is effec-
tively uncorrelated to F-Scores, implying that how large the gap is between clusters is not of
high importance to cluster quality on this dataset.

4.4.2 A Combined Validation Measure

Using the information presented in Table 4.2, the Silhouette measure and connectedness
measures were chosen as the basis for a combined validation measure. This new measure,
Combined Silhouette and Connectedness (CSC), seeks to maximise both the Silhouette mea-
sure and connectedness, such that values are treated as optimal when clusters are maximally
compact relative to the separation between clusters (from the Silhouette measure), but also
locally dense (from connectedness).

The combined validation measure is thus a modified product of the silhouette measure
and the connectedness measure, modified such that when both of these are negative the
product is still negative. This is to say that, given the silhouette measure for a clustering Sil
and the connectedness for a clustering Conn the combined validation measure is then:

CSC =

{
Sil ∗ Conn i f (Sil > 0) ∨ (Conn > 0)
−(Sil ∗ Conn) i f (Sil < 0) ∧ (Conn < 0)

An equivalent formulation, which may be more intuitive, is:
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CSC =

{
|Sil ∗ Conn| i f (Sil > 0) ∧ (Conn > 0)
−|Sil ∗ Conn| i f (Sil < 0) ∨ (Conn < 0)

CSC performs similarly to the standard Silhouette measure on datasets with low dimen-
sionality, producing the result seen in Figure 4.2 on the same dataset. However, as can be
seen in Chapter 5, is more robust to naive solutions in high dimensions.

Figure 4.2: Results of Clustering using CSC

4.4.3 Calculating CSC during Optimisation

A novel consideration presents itself in the construction of CSC, that is whether to calculate
CSC using the entire, unweighted, feature set, or whether to use the feature selection and
weighting found by the algorithm.

The intuition for using the selected and weighted features is this: if the Curse of Di-
mensionality reduces the meaning of distance measures in high dimensions, then using
the weighted feature subset may be necessary to meaningfully analyse partitionings of the
dataset. A contrary intuition is that, as naive solutions are problematic, then using the full
and unweighted feature set may prevent some naive solutions from occurring.

To test this empirically, four test conditions are considered, corresponding to each com-
ponent of CSC (that is, the Silhouette measure and connectedness), utilising the full un-
weighted feature set or using the weighted feature subset during optimisation. For each of
these combinations the 3NN Clustering algorithm performed feature selection and weight-
ing on 4 datasets, corresponding to 4 cluster and 10 cluster datasets in each of 50 and 100
dimensions.

Table 4.3: Mean F-Scores for CSC Variants

Silhouette

Connectedness
Full Feature Set Weighted Feature Subset

Full Feature Set 0.685 0.734
Weighted Feature Subset 0.698 0.671

As can be seen in Table 4.3, for CSC a mixed approach was found to be most beneficial,
using the weighted feature subset for the Silhouette measure, and using the unchanged full
feature set for the Connectedness. Thus we can say that CSC, as an optimisation criteria, is
seeking feature selection and weighting such that the broader cluster qualities are optimised
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under feature selection and weighting, while the local neighbourhood around data instances
remains sensible with regards to the original topology of the dataset.

4.5 Statistical Based - Bayes Clustering Ratio

Drawing inspiration from the expectation maximisation algorithm [13] and Bayesian model
comparison [22] the novel validation measure Bayes Clustering Ratio (BCR) is proposed.

We assume that data are independently distributed along axis according to a multivari-
ate Gaussian distribution, where each cluster is said to have its own such distribution with
means and standard deviations calculated in the usual way from the points associated with
the cluster, we define the collection of these distributions as the Models. We further adopt
the standard method of treating the multivariate probability density function from a model
as the likelihood of a point being generated by that distribution, and define the overall prob-
ability of a given model associated with a cluster C as P(ModelC) = |C|

|Dataset| , or the size of
the cluster relative to the size of the dataset.

For each datapoint we consider clustering as making the claim that the Model ∈ Models
associated with its cluster has generated it, a model which we denote ModelC, where x ∈ C.
We thus define the following conditional probability for a datapoint x:

P(Models|x) = P(ModelC|x) = P(x|ModelC)P(ModelC)
P(x) using Bayes theorem.

Clustering, however, is not simply concerned with how well a point sits in its own clus-
ter, but also how well explained that point is by the nearest neighbouring cluster. Thus we
introduce a statistical version of separability, denoting how well explained a point is by the
statistically ’nearest’ cluster. We denote this nearest cluster N as:

N = argmaxC′ 6=C (P(ModelC′ |x)) = argmaxC′ 6=C

(
P(x|ModelC′ )P(ModelC′ )

P(x)

)
Or in other words, N is the cluster which doesn’t contain x but is the most likely cluster

given x.
We now need to combine these two measures, and we do so as a likelihood ratio:

LR(x) =
P(x|ModelC)P(ModelC)

P(x)
P(x|ModelN )P(ModelN )

P(x)

= P(x|ModelC)P(ModelC)
P(x|ModelN)P(ModelN)

.

The BCR of the entire dataset is then equal to ∏x∈Data LR(x), which we treat as a loga-
rithmic to both avoid rounding error and provide some intuition as to the behaviour of the
function, giving us the utilised

BCR(Dataset, Clusters) = ∑
x∈Dataset

log(LR(x)) = ∑
x∈Dataset

log
(

P(x|ModelC)P(ModelC)

P(x|ModelN)P(ModelN)

)
(4.1)

or, equivalently,

BCR(Dataset, Clusters) = ∑
x∈Dataset

(log (P(x|ModelC)P(ModelC))− log (P(x|ModelN)P(ModelN)))

(4.2)
There is however both a computational and theoretic issue here. The computational issue

is that while mathematically the denominator in this equation is always greater than zero,
computationally in high dimensions this value can easily be rounded to zero, or similarly
the logarithm of the value can overflow. The theoretic issue is that if several small clusters
are found, each of which has very low standard deviation on at least one axis, then this ratio
can be trivially maximised. This is especially true in high dimensions, where the probability
of finding points which are arbitrarily close on at least one axis approaches 1.
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To address both of these issues, we propose the idea of adding artificial noise to the
standard deviations of models, such that for each axis in each model σ := σ + c for some
small constant c. This prevents small clusters of this form from acting as trivial optimal
solutions, and also can prevent calculation errors by ensuring that P(x|ModelN)P(ModelN)
is not treated as zero. Conceptually, this artificial noise can be thought of as a user specified
global uncertainty for each model and each axis, where a higher value for c makes each
model more uncertain. Note that adding a constant to all standard deviations reduces the
certainty of models with low standard deviations more than robust models which account
for a variety of data. In terms of established statistical machine learning methods, the effect
is thus similar to adding a uniform prior to the model, and tends to lower peaks in the
probability density function while raising troughs [29].

4.6 Summary

This chapter examined the justification for Goal 1 of the current project, and demonstrated
that naive solutions do present themselves when using some existing validation measures as
optimisation criteria in a feature selection and weighting framework. Further, this chapter
detailed the creation of two novel validation measures, satisfying Goal 1, which form the
optimisation criterion for the new PSO based feature selection and weighting method, PSO-
FSW.
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Chapter 5

Particle Swarm Optimisation for
Feature Selection and Weighting

5.1 Introduction

This chapter introduces Particle Swarm Optimisation for Feature Selection and Weighting
(PSO-FSW), and details both the testing of the algorithm as well as analysing outcomes,
contributing towards goals 2 and 3.

PSO-FSW is a novel EC method designed to act as a wrapper method for distance based
clustering algorithms. PSO-FSW is designed to automatically perform feature selection
while finding optimal weightings for selected features according to some user-defined opti-
misation criteria. It was tested using the novel validation measures proposed in Chapter 4
for the purposes of this project.

5.2 Chapter Goals

The goals of this chapter are to describe the novel method, PSO-FSW, and demonstrate the
results of PSO-FSW when applied to ellipsoid datasets, satisfying goals 2 and 3 respectively.
To demonstrate the achievement of these goals clearly, the structure of this section is as
follows:

• Section 3 describes how a novel PSO representation is used to perform simultaneous
feature selection and weighting in PSO-FSW, and explains some of the characteristics
of this novel representation.

• Section 4 formalises how the novel validation measures are utilised as fitness functions
used in PSO-FSW.

• Section 5 explains the overall PSO-FSW algorithm, including visualisations of the
method and pseudocode.

• Section 6 explains the experimental design, including specific parameter settings.

• Section 7 presents the results of testing.

Thus, sections 3 through 5 will demonstrate that Goal 2 is satisfied, that is that a novel PSO
method for feature selection and weighting in clustering has been developed. Sections 6 and
7 will demonstrate that Goal 3 is satisfied, that is that the new method, overall, improves
clustering outcomes while using a reduced number of features across a variety of different
clustering algorithms.
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5.3 A New PSO Representation for Feature Selection and Weight-
ing

As with much prior work utilising PSO for feature selection the dimensionality of each par-
ticle in PSO-FSW is equal to the dimensionality of the dataset, with each dimension of the
particle corresponding to a dimension in the dataset.

Prior work, however, has mapped each dimension of the particle to a binary value, either
through a threshold mapping [56] or probabilistically as in binary PSO [56]. In order to
allow both feature selection and weighting, the current algorithm proposes the following
interpretation of each dimension in the particle:

interpretationd =

{
particled , where particled > 0
0 , otherwise

This interpretation of the particle is then utilised when calculating pairwise distance
between points in the dataset, being utilised in the distance function in the following way,
where d is the dimensionality of the dataset, x and y are datapoints, and ci = interpretationi, i ∈
{1, ..., d}:

d(x, y) =

√√√√ d

∑
i=1

(ci ∗ (xi − yi))2 (5.1)

Thus where particlei ≤ 0, this interpretation is equivalent to removing the feature in-
dexed at i from the dataset to perform feature selection. Where particlei > 0 this interpre-
tation is equivalent to weighting the feature indexed at i by the value of particlei. Further,
as distance functions are symmetric around 0 for each ci, this method does not remove any
unique solutions to the problem. That is, the distance between two points is the same where
ci = −ci, so by setting negative values to 0 we maintain all possible feature weightings. We
note as a point of interest that this interpretation is equivalent under certain assumptions to
a rectified linear unit [38], as commonly used in artificial neural networks.

5.4 Fitness Function

As PSO-FSW is a wrapper method we are able to evaluate the partitioning that results from
a given clustering algorithm using a weighted feature subset corresponding to a particle,
and then assign this value to the particle itself.

Specifically, after the interpretation of a particle to the vector c a distance based clustering
method is used, with all pairwise distance between datapoints being calculated using the
distance function presented in Equation 5. The resulting clusters are then assigned a value
according to one of the novel validation measures, namely CSC or BCR. This value is treated
as the fitness of the particle used to create the distance function.

5.5 Overall Algorithm

The pseudo-code of the full algorithm with novel particle representation (PSO-FSW), given
a user specified base clustering algorithm and evaluation criteria for particles, is presented
in Algorithm 1. This algorithm is further visualised in Figure 5.1.
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1 begin
2 randomly initialise PSO particles and velocities;
3 while termination criteria not met do:
4 for each particle do:
5 create pairwise distance function dist from particle;
6 form clusters using provided clustering algorithm and dist;
7 assign particle value as CSC or BCR of clusters;
8 end for
9 update pbest of particles and gbest;

10 for each particle do:
11 update particle velocity according to equation (2.1)
12 update particle position according to equation (2.2)
13 end for
14 end while
15 create pairwise distance function dist from gbest;
16 form clusters using provided clustering algorithm and dist;
17 calculate the F-Score of clusters;
18 return gbest and the resulting F-Score;
19 end

Algorithm 1: Pseudo-code of PSO-FSW

Figure 5.1: Flow Diagram of PSO-FSW
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5.6 Experiment Design

The tests evaluated final clusterings from our three conditions (Baseline, PSO-FSW(CSC),
and PSO-FSW(BCR)) for each algorithm, using the F-Score. These scores informed whether
PSO-FSW was said to have improved over baseline algorithms, and was the basis of statis-
tical significance testing. Further consideration was given to whether or not less features
were used to generate the result, an indication of interpretability.

5.6.1 Structure of Experiments

For the four clustering algorithms, 30 independent trials were performed for each of the
following three cases:

1. Baseline using the relevant algorithm with Euclidean distance on the unchanged fea-
ture set

2. PSO-FSW(CSC) generating a final partitioning through PSO-FSW using the novel dis-
tance based internal validation measure CSC as an optimisation criteria

3. PSO-FSW(BCR) generating a final partitioning through PSO-FSW using the novel sta-
tistical internal validation measure BCR as an optimisation criteria

For each clustering algorithm results were compared between the PSO-FSW trials and the
baseline using a paired Wilcoxon test, where the pairing is done by dataset.

5.6.2 Parameter Settings

There are a large number of parameters in different algorithms in the experiments.

PSO

The parameters selected for the PSO algorithm are the ones suggested in [49]. Specifically
they are: weight decay, ω = 0.73; weights of best local and global positions, c1 = c2 = 1.5;
maximum velocity, vmax = 1.0; the initial distribution for velocity and position is uniform
in [−2, 2]; the number of particles is 30; and the termination criteria is 30 generations, or 5
generations without global best improvement.

DBSCAN

The optimal value for the epsilon parameter was found empirically by performing a linear
search over values of epsilon on datasets also generated using the method put forward by
Handl and Knowles [25], which hold the same dimensionalities and numbers of clusters, but
were not the same datasets as used in final tests. This search found the following optimal
values for the Euclidean case by dimensionality: dimensionality 2, ε = 0.4; dimensionality
50, ε = 0.3; dimensionality 100, ε = 0.3. The minimum samples parameter is set to 5 after a
similar process. Results from these trials are outlined in Appendix C.

5.6.2.1 KNN-Clustering

The value for K is fixed at 3 based on empirical trials on datasets also generated using the
method put forward by Handl and Knowles [25]. Results from these trials are outlined in
Appendix C.
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5.6.2.2 BCR Artificial Noise

The BCR artificial noise parameter is fixed at 0.1 based on a small number of empirical
trials on datasets also generated using the method put forward by Handl and Knowles [25].
Results from these trials are outlined in Appendix D.

5.7 Results and Discussion

Overall, the results of PSO-FSW(CSC) show significant improvement in F-Measure over all
respective baselines. PSO-FSW(BCR) had more mixed results; significantly increasing F-
Measure scores for all baseline algorithms with the exception of DBSCAN, where it was
significantly decreased. Specifically the following F-Measures and corresponding p-values
relative to baseline, calculated using an unpaired Wilcoxon test, are found for each algo-
rithm:

Table 5.1: Mean F-Measure and Corresponding P-Values

Baseline PSO-FSW(CSC) P-Value PSO-FSW(BCR) P-Value
Affinity Propagation 0.577 0.639(+) 2.4e-28 0.653(+) 1.9e-20

KNN-Clustering 0.844 0.946(+) 1.0e-29 0.901(+) 1.5e-14
DBSCAN 0.795 0.817(+) 4.5e-08 0.547(-) 7.8e-22

Agglomerative 0.539 0.697(+) 3.5e-30 0.693(+) 1.4e-20

A plot of the aggregate F-Scores can be found in Figure 5.2.

Figure 5.2: F-Scores by Algorithm
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This plot, while agreeing with the overall results demonstrated in Table 5.1, shows that
finer analysis is needed. In particular, for DBSCAN using PSO-FSW(CSC) and 3NN-Clustering
using PSO-FSW(BCR), while the algorithm is overall significantly improved from baseline,
it seems to also include several low F-Score outliers.

By separating results by dimensionality we can see that the improvement for some algo-
rithms is relatively consistent across dimensionalities. In particular we note that for the 3NN
Clustering algorithm and Affinity Propagation, the improvement in average F-Score can be
seen over all dimensionalities for both optimisation criteria, however we note some signif-
icant outliers for PSO-FSW(BCR) when used with 3NN-Clustering on the 50 dimensional
dataset. These results are presented in Figures 5.3 to 5.5.

Figure 5.3: F-Scores for Datasets of Dimensionality 2 by Algorithm
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Figure 5.4: F-Scores for Datasets of Dimensionality 50 by Algorithm

Figure 5.5: F-Scores for Datasets of Dimensionality 100 by Algorithm

It is also important to note the interaction between the number of clusters present in a
dataset and the effectiveness of the novel technique. We note that the improvement in F-
Score overall seems more pronounced with a smaller number of clusters, however it is still
frequently evident when the number of clusters is 10. These results are shown in Figures 5.6
and 5.7.
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Figure 5.6: F-Scores for Datasets with 4 Clusters by Algorithm

Figure 5.7: F-Scores for Datasets with 10 Clusters by Algorithm

We further note that in all cases where dimensionality is greater than 2 the novel ap-
proach always reduces the number of features used, making the clusters more interpretable.
Further, and interestingly, occasionally on two dimensional datasets PSO-FSW(BCR) will
select only one of the two features. This is particularly interesting when considering that no
trials for PSO-FSW(BCR) when using Affinity Propagation or Agglomerative clustering fall
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below the worst case performance of the baseline algorithm on these datasets. The mean
ratio of features used are presented in Table 5.3.

Table 5.2: Mean Percent of Features Used

(a) PSO-FSW(CSC)

Dimensionality 2 Dimensionality 50 Dimensionality 100
Affinity Propagation 1.0 0.527 0.498

KNN-Clustering 1.0 0.500 0.488
DBSCAN 1.0 0.485 0.515

Agglomerative 1.0 0.448 0.523

(b) PSO-FSW(BCR)

Dimensionality 2 Dimensionality 50 Dimensionality 100
Affinity Propagation 0.875 0.49 0.487

KNN-Clustering 1.0 0.483 0.497
DBSCAN 0.833 0.503 0.503

Agglomerative 0.833 0.512 0.509

5.8 Further Analysis

While PSO-FSW(CSC) and PSO-FSW(BCR) improved outcomes relative to baseline algo-
rithms in most cases, each method had instances of returning poor clustering solutions.
This analysis is primarily focused on explaining why these behaviours occurred, as well as
showing the specific characteristics of some final partitionings.

5.8.1 PSO-FSW(CSC)

While PSO-FSW(CSC) improved overall results relative to all baselines, we note that for
DBSCAN, PSO-FSW(CSC) tended to return solutions which were worse than baseline for
the the 50 dimensional 10 cluster dataset.

The overall results for this test condition are presented in Table 5.3.

Table 5.3: Results of PSO-FSW(CSC) when used with DBSCAN

Algorithm d Clusters µbase µtest σtest p-value #clusbase #clustest

DBSCAN

2 4 0.72 0.90 0.0 2.9e-11 7.0 3.0
2 10 0.87 0.95 0.015 2.9e-11 11.0 10.19
50 4 0.70 0.82 0.13 9.2e-06 5.0 4.38
50 10 0.87 0.47 0.27 1.1e-06 14.0 7.0
100 4 0.78 0.87 0.066 2.9e-11 6.0 5.38
100 10 0.82 0.89 0.050 8.1e-09 15.0 10.94

In investigating this result, it is important to determine whether the PSO algorithm is
unable to find good optima, or whether good optima are found corresponding to poor solu-
tions.
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From the individual solutions for this dataset we thus choose a solution with a high F-
Score, and one with a low F-Score, and compare the CSC scores for these resulting solutions.

Table 5.4: Comparison of Individual Solutions

F-Score CSC BCR #Clusters #selected f eatures
# f eatures

Good Solution 0.919 9.60 11835.62 12 0.50
Poor Solution 0.327 11.30 19187.77 5 0.46

From these results it can be seen that PSO is finding a better optima for at least some trials
where F-Score is significantly lower than baseline. This indicates that the poor solutions in
this test case represent something approaching a trivial solution, rather than insufficient
optimisation.

We further note that both of the lowest base-truth Silhouette results occur on the 50 di-
mensional data, but that this behaviour not seen frequently for the 50 dimensional dataset
with 4 clusters. Thus it appears that this result is an interaction between a higher num-
ber of clusters, and a dataset for which the base-truth Silhouette is low relative to the 100
dimensional case.

5.8.2 PSO-FSW(BCR)

PSO-FSW(BCR) contained two specific cases where F-Score was lowered relative to baseline
on the higher dimensional datasets. These cases are where PSO-FSW(BCR) was used with
DBSCAN, and for 3NN-Clustering on the 50 dimensional 10 cluster dataset. This subsection
considers each of these cases.

5.8.2.1 PSO-FSW(BCR) and DBSCAN

It is important to note that there is a single test condition in which PSO-FSW significantly
lowered F-Score relative to baseline, namely where PSO-FSW(BCR) was used with DB-
SCAN. DBSCAN is unique in that it can return unassigned points, which are deemed out-
liers. If treated as a cluster, this group of outliers have very high variance and a centre
roughly in the middle of other clusters. Thus, this significantly reduces all scores in BCR by
providing a second cluster which is a viable explanation for all other points in the dataset,
damaging our notion of statistical separability, thus making BCR inappropriate for use with
DBSCAN.

Cursory tests were done with regards to preventing this behaviour. Specifically, not
considering these unassigned outliers as a cluster when calculating the BCR for resulting
clusters from DBSCAN was considered, but this was found not to improve results, and
to lead to many datapoints being left unassigned. That is, when unassigned points are
not included in the calculation for BCR, PSO-FSW(BCR) would find a weighted subset of
features such that a large number of points were classified as outliers, while finding naive
solutions of two clusters. This effect was more evident on higher dimensional datasets.
These results can be found in Appendix E.

5.8.2.2 PSO-FSW(BCR) and 3NN-Clustering

An outlier with regards to lowering F-Scores was also seen when PSO-FCW(BCR) was used
3NN-Clustering on the 50 dimensional dataset with 10 clusters. In particular, the PSO-
FSW(BCR) frequently returned two cluster solutions in this case tended to correspond to
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high BCR values, indicating that BCR is not robust to naive solutions on this dataset. An
illustrative example of this behaviour can be found in Table 5.5.

Table 5.5: Comparison of PSO-FSW(BCR) 3NN-Clustering Solutions

F-Score CSC BCR #Clusters #selected f eatures
# f eatures

Good Solution 1.0 10.62 19829.73 10 0.54
Poor Solution 0.334 0.011 55713.51 2 0.52

Thus, rather than a failure of PSO to find a sufficiently good solution, these outliers
occurred because of a situation in which there is a disjoint between the base truth and which
solutions BCR can evaluate highly.

We also note that, with 3NN-Clustering, where the mean F-Scores were highest for the
baseline algorithm as well as both PSO-FSW tests, PSO-FSW(BCR) provides higher F-Scores
as dimensionality increases, achieving nearly perfect F-Scores by the time dimensionality
is 100. In considering why this may be it’s important to note that there are two key as-
sumptions behind the BCR validation measure. Firstly that dimensions are independently
distributed, and secondly that all clusters are Gaussian in each dimension. We note in Chap-
ter 3 that the ellipsoid datasets are designed such that this first assumption should not hold
in general, and that the second assumption can also potentially be invalid for some clusters
in some dimensions.

To investigate the independence axes within datasets we look at the covariance matrix
for each base truth cluster from the 50 and 100 dimensional datasets looking at two values:
the mean variance of diagonal entries in the covariance matrices, and the mean absolute
value of non-diagonal entries in the covariance matrices. Both of these values should be
zero where a cluster in a dataset is perfectly hyperspherical and independent along axes. In
particular the mean absolute value of non-diagonal entries in the covariance matrices being
above zero indicates that independence relations do not hold for that cluster.

Table 5.3 shows these values for the least hyperspherical base truth cluster in each dataset.

Table 5.6: Interpretation of Covariance Matrices for Selected Base Truth Cluster by Dataset

D #Clusters σcov(i,i), i ∈ {1, ..., D} µ|cov(i,j)|, i, j ∈ {1, ..., D}, i 6= j
50 4 0.011 0.0059
50 10 0.022 0.0089

100 4 0.0091 0.0044
100 10 0.0077 0.0043

We note that the least hyperspherical cluster in the 50 dimensional 10 cluster dataset con-
tains at least twice the standard deviation in the variance of each dimension when compared
with other datasets, and also has the highest mean absolute value for non-diagonal entries
in the covariance matrix. Thus, the independence assumption made for the BCR validation
measure appear to hold less for at least one base truth cluster in the dataset for which it
found naive solutions frequently. We note that this violation of specific statistical assump-
tions is the likely explanation for the failure of BCR to act as a good optimisation criteria for
this dataset.

We also note that, for the 100 dimensional datasets, this independence assumption seems
to hold more strongly. Thus, the clusters within datasets becoming more independent with
respect to individual axes can explain why PSO-FSW(BCR) tended to perform better as di-
mensionality increased.
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5.9 Chapter Summary

This chapter presented the novel method PSO-FSW, and tested it over a variety of datasets
using four different baselines, optimising according to each of the novel validation measures
introduced in Chapter 4. Results indicated that PSO-FSW achieved significantly improved
results over all baselines when optimising for the distance based validation measure CSC
while improving interpretability. Further, in three of the four test conditions PSO-FSW also
improved results when optimising for the novel statistical validation measure BCR. Where
BCR was found to significantly lower results an explanation was presented and examined.

Further explanations for the somewhat counter-intuitive result that PSO-FSW(BCR) was
a better method at high dimensionality when using the 3NN Clustering algorithm were
presented and examined, finding that at higher dimensions the assumptions behind the
BCR validation measure may hold more frequently.
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Chapter 6

Extending PSO-FSW

6.1 Introduction

This investigates an extension to PSO-FSW, which utilises PSO to select features, find weight-
ings for selected features, and also finding exponents with which to calculate pairwise dis-
tance. This extension is named Particle Swarm Optimisation for Feature Selection, Weight-
ing, and Exponents, denoted PSO-FSWE.

6.2 Chapter Goals

The goal of this chapter is to provide a preliminary investigation into an extension to PSO-
FSW, seeing if the results demonstrated by PSO-FSW can be further improved by also search-
ing for unique exponents in the distance function presented in Equation 5. We note that, as
PSO-FSW is highly novel already, the concept of this extension is unapproached in the litera-
ture. Thus, this extension represents exploratory work supplementary to our main research
goals.

6.3 Augmenting PSO-FSW

PSO-FSW created a particle of length d where d was the dimensionality of the dataset in
order to perform feature selection and weighting. The extension, PSO-FSWE, will utilise
a particle of length 2d, where the values 1, .., d of the particle are used for feature selection
and weighting, and the values (d+ 1), ..., 2d are used to represent unique exponents for each
dimension.

The range [1, 3] was chosen for exponents, and they were left real-valued. This range
is chosen such the average exponent matches that of PSO-FSW, which utilised Euclidean
distance, and such that no single feature should be able to dominate the distance function.

Thus we use the following interpretation of particles:

interpretationi =

{
particlei , where particlei > 0
0 , otherwise

, i ∈ {1, ..., d}

interpretationi =
particlei + 4

2
, i ∈ {d + 1, ..., 2d}

We note that this interpretation allows us to leave our PSO initalisation uniformly in
[−2, 2], as with PSO-FSW, while achieving our desired exponent mapping.
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We then denote ci = interpretationi, i ∈ {1, ..., d}, pi = interpretationi+d, i ∈ {1, ..., d},
and µp = mean( p̄), where p̄ =

⋃{pi : ci > 0}, utilising them in the pairwise distance
function below:

d(x, y) = µp

√√√√ d

∑
i=1
|ci ∗ (xi − yi)|pi (6.1)

We note importantly that PSO-FSWE strictly extends PSO-FSW, as every possible particle
in PSO-FSW has an equivalent particle in PSO-FSWP where ∀i∈{1,..,d}(pi = 2).

6.4 Parameters and Experimental Design

The parameters and datasets used are all exactly as in Chapter 5, with the exception that
particles now have length 2d, where d is the dimensionality of the dataset. The experimen-
tal design differs from that in the previous chapter in that each algorithm was tested for
only four independent trials per dataset, meaning that each algorithm has a total of 24 tests
associated with it.

6.5 Results and Discussion

Overall, the results of PSO-FSWE improvement in F-Measure relative to baseline in only four
of 8 test conditions. Namely, the F-Measure significantly improved overall for the Affinity
Propagation and Agglomerative clustering algorithms. The F-Measure was significantly
decreased for the case where PSO-FSWE(BCR) was used with DBSCAN, and no significant
effect was found for other test conditions.

Thus, PSO-FSWE can be said to show less improvement in F-Measure than the simpler
PSO-FSW.

Aggregate results for PSO-FSWE can be seen in Table 6.1, with p-values calculated using
an unpaired Wilcoxon test.

Table 6.1: Mean F-Measure and Corresponding P-Values

Baseline PSO-FSWE(CSC) P-Value PSO-FSWE(BCR) P-Value
Affinity Propagation 0.577 0.67(+) 5.6e-05 0.633(+) 0.0133

KNN-Clustering 0.844 0.820(=) 0.345 0.723(=) 0.0990
DBSCAN 0.795 0.771(=) 0.290 0.483(-) 7.5e-07

Agglomerative 0.539 0.701(+) 0.00061 0.682(+) 0.0392

A plot of the aggregate F-Scores can be found in Figure 6.1.
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Figure 6.1: F-Scores by Algorithm

This plot shows that poor solutions appear more frequently when using PSO-FSWE rela-
tive to PSO-FSW, with results from KNN-Clustering and DBSCAN both indicating a number
of poor solutions.

As with PSO-FSW, the mean number of features used for datasets with dimensionality
above two is approximately half the full feature set. These results are shown in Table 6.2.

Table 6.2: Mean Percent of Features Used

(a) PSO-FSWE(CSC)

Dimensionality 2 Dimensionality 50 Dimensionality 100
Affinity Propagation 1.0 0.455 0.456

KNN-Clustering 1.0 0.430 0.484
DBSCAN 1.0 0.463 0.495

Agglomerative 1.0 0.498 0.476

(b) PSO-FSWE(BCR)

Dimensionality 2 Dimensionality 50 Dimensionality 100
Affinity Propagation 0.750 0.500 0.476

KNN-Clustering 1.0 0.435 0.518
DBSCAN 0.688 0.528 0.456

Agglomerative 1.0 0.55 0.505
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6.6 Further Analysis

While PSO-FSWE improved outcomes when used with two of the four baseline algorithms,
a number of poor clustering solutions were returned. This analysis is primarily focussed
on providing specific examples from the test results for analysis and examining why poor
clustering solutions were returned for some algorithms.

6.6.1 Specific Test Outcomes

We note, as with PSO-FSW, that naive solutions can occur primarily due to two possible
things: the PSO algorithm being unable to find a good optima, or good optima not corre-
sponding to cluster partitions which align with the base truth.

To examine this we observe specific test outcomes from the same dataset, one which has
a high F-Measure, the other which has a low F-Measure, and we observe the difference in
fitness of each solution according to our optimisation criterion.

As can be seen in Table 6.3, the CSC measure is higher for the solution with lower F-
Score, indicating that poor solutions are indeed naive solutions, rather than a case of PSO
being unable to find good optima in the larger search space.

Table 6.3: Comparison of PSO-FSWE(CSC) Outcomes for 3NN-Clustering

D #Clusters F-Score CSC BCR #Clusters Found #selected f eatures
# f eatures

Good Solution 100 4 0.822 15.08 9133.85 4 0.47
Poor Solution 100 4 0.509 15.65 14874.82 2 0.43

We observe similar behaviour for the same dataset when using PSO-FSWE(BCR), demon-
strated in Table 6.4. Further, in this instance, it seems as if the solution with perfect F-Score
corresponds to a particularly poor optima, providing strong evidence that the results seen
are due to naive solutions occurring.

Table 6.4: Comparison of PSO-FSWE(BCR) Outcomesfor 3NN-Clustering

D #Clusters F-Score CSC BCR #Clusters Found #selected f eatures
# f eatures

Good Solution 100 4 1.0 12.30 10064.55 4 0.47
Poor Solution 100 4 0.520 4.57 22620.18 2 0.43

Thus, close analysis of specific results demonstrates that the novel validation measures
lead to naive solutions when used as optimisation criteria with the PSO-FSWE method, and
that this is responsible for the results seen.

6.6.2 Affinity Propagation and Agglomerative Clustering

The two algorithms which showed significant improvement when using the PSO-FSWE
method were Affinity Propagation and Agglomerative clustering. We present simple obser-
vations regarding why these algorithms did not return naive solutions under the extended
novel framework.
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Affinity Propagation, when used with these ellipsoid datasets, has a tendency to return
many more clusters than the base truth, frequently finding more than twice the number of
acutal clusters present in the dataset (this behaviour can be seen clearly for all tests in Ap-
pendix A and B). Where naive solutions are found by finding significantly fewer clusters
than are present in the base truth, it appears that Affinity Propagation is unable to reason-
ably find these naive solutions. Thus, it appears as if Affinity Propagation tends not to return
naive solutions using these validation measures under this framework simply because the
naive solutions conflict with how Affinity Propagation tends to partition these datasets.

We note that agglomerative clustering is unique among the algorithms used in this work
in that it is the only algorithm for which the number of clusters to be found is predefined.
Thus, where naive solutions correspond to partitionings which have far fewer clusters than
the base truth, agglomerative clustering is unable to return these naive solutions, being re-
stricted to solutions which contain only the correct number of clusters.

6.7 Chapter Summary

This chapter demonstrated an extension to PSO-FSW named PSO-FSWE, which also finds
exponents for use in distance functions which are generated for a given dataset. Test results
were mixed for PSO-FSWE, with improvements only seen where PSO-FSWE was used with
Affinity Propagation and agglomerative clustering.

These behaviours were examined and it was found that PSO-FSWE is significantly more
prone to returning naive solutions than our primary method PSO-FSW.
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Chapter 7

Conclusions and Future Work

The work presented in this project aimed to develop a novel method for simultaneous fea-
ture selection and weighting in clustering. Additionally, the project aimed to develop inter-
nal cluster validation measures which were suitable as fitness functions in order to achieve
this goal. Two new such validation measures were proposed, each indicating benefit as a
fitness function for feature selection and weighting. Of the two created validation measures,
the Bayes Clustering Ratio represented the first clustering specific statistical validation mea-
sure, however it was found to only be appropriate for use on 3 of the 4 tested clustering
algorithms.

In creating the novel method for simultaneous feature selection and weighting in clus-
tering, PSO was utilised. This approach, PSO-FSW, overall, led to clusters which were much
more aligned with the base truth than baseline algorithms. Further, these improvements
were made in a way that made clusters more interpretable, selecting approximately 50% of
features to perform clustering.

An extension to this method, named PSO-FSWE, was also investigated, however it demon-
strated less benefit PSO-FSW. In particular, PSO-FSWE was found to be prone to discovering
optima that represented solutions that appeared less representative of the base truth than
those found by baseline algorithms.

Overall, each of the goals specified in this project was met.

7.1 Major Conclusions

Several major conclusions can be drawn from this project:

1. Many existing internal validation measures are not robust to naive solutions when
used as fitness functions in a feature selection and weighting framework. In particular,
it was shown that many internal validation measures will lead to two cluster partitions
when used as fitness functions, regardless of the base truth number of clusters.

2. The two novel validation measures presented have shown that there are internal val-
idation measures which are relatively robust to naive solutions. In particular it has
been shown under a feature selection and weighting framework the novel CSC mea-
sure avoids naive solutions when paired with each of the 4 tested distance-based clus-
tering algorithms. The novel statistical measure, the BCR, was found to be robust for
the tested distance-based algorithms which did not allow for outliers.

3. It was shown that a cluster analysis specific statistical internal validation measure pro-
vides benefit. BCR, which accounts for a statistical notion of cluster separability, was
found to lead to a better mean F-Score when used as a fitness function relative to
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CSC on some algorithms and datasets, particularly when the datasets were 100 di-
mensional.

4. Simultaneous feature selection and weighting can be used in clustering to improve the
performance of several distance based clustering algorithms on ellipsoid datasets. In
particular, using PSO to perform simultaneous feature selection and weighting as a
wrapper method was shown to improve how closely generated cluster partitions re-
flect the base truth in many cases, while significantly reducing the number of features
used.

5. It was also shown that an extension to the proposed PSO-FSW method tended to
generate more naive solutions. In particular, PSO-FSWE was introduced, which also
found exponents for use in a pairwise distance function. PSO-FSWE was found to un-
derperform relative to PSO-FSW in most test cases, due to returning naive solutions
more frequently. Despite the underwhelming performance, this result represented the
first work in creating distance functions which are specific to a given dataset in clus-
tering, and provides opportunity for future work.

7.2 Future Work

There are several extensions to the current project which could be investigated. PSO-FSW
was demonstrated to largely outperform baseline algorithms on the used metric. However,
the current project has not compared PSO-FSW directly to existing algorithms for feature
selection in clustering. In particular, future work should compare PSO-FSW to a binary PSO
feature selection algorithm directly, in order to ascertain whether or not the novel approach
holds benefit over existing interpretable dimensionality reduction techniques in clustering.

Prior work [55] has also demonstrated the benefit of careful initialisation to PSO algo-
rithms for feature selection. In particular, it is possible to emulate a sequential forward
search, which has demonstrated an ability to lower the number of features selected by
stochastic feature selection algorithms. The application of this technique to PSO-FSW might
encourage the selection of smaller feature subsets, and thus even more interpretable cluster
partitions.

This work also utilised only generated ellipsoid datasets. Future work should investi-
gate the application of PSO-FSW to real-world datasets on which the base truth is known.
This would establish whether or not PSO-FSW is a method that specifically improves the
performance of clustering algorithms on ellipsoid datasets, or whether the effect is more
general.

The creation of the clustering specific statistical validation measure, the BCR, also offers
opportunity for extension. In particular, a thorough analysis of the effect and importance of
the artificial noise parameter in the BCR could yield benefit. Further, BCR was shown to be
sensitive to assumptions of independence in this project. A further investigation of how the
BCR is affected by different qualities of datasets is essential before it can be presented as a
robust validation measure.
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Appendix A

Full Results for PSO-FSW

This section of the appendix displays the detailed results for each dataset and test condition
for both PSO-FSW(CSC) and PSO-FSW(BCR). Each row in each table is a summation of 30
independent trials.

Table A.1: Full PSO-FSW(CSC) Results

Algorithm D Clusters µbase µtest σtest p-value #clusbase #clustest

AffinityProp

2 4 0.60 0.75 0.034 2.9e-11 34.0 5.75
2 10 0.67 0.78 0.030 2.9e-11 37.0 14.81
50 4 0.52 0.56 0.038 9.2e-06 11.0 10.19
50 10 0.55 0.58 0.021 0.41 29.0 25.81
100 4 0.54 0.58 0.22 2.9e-11 12.0 10.31
100 10 0.58 0.59 0.020 1.1e-06 28.0 25.58

Agglomerative

2 4 0.85 0.86 0.040 0.38 4.0 4.0
2 10 0.57 0.93 0.028 2.9e-11 10.0 10.0
50 4 0.51 0.70 0.16 2.9e-11 4.0 4.0
50 10 0.43 0.51 0.049 5.3e-10 10.0 10.0
100 4 0.49 0.70 0.043 2.9e-11 4.0 4.0
100 10 0.40 0.48 0.032 2.9e-11 10.0 10.0

DBSCAN

2 4 0.72 0.90 0.0 2.9e-11 7.0 3.0
2 10 0.87 0.95 0.015 2.9e-11 11.0 10.19
50 4 0.70 0.82 0.13 9.2e-06 5.0 4.38
50 10 0.87 0.47 0.27 1.1e-06 14.0 7.0
100 4 0.78 0.87 0.066 2.9e-11 6.0 5.38
100 10 0.82 0.89 0.050 8.1e-09 15.0 10.94

KNN-Clus

2 4 0.85 0.99 2.2e-16 2.9e-11 4.0 4.0
2 10 0.62 0.80 1.1e-16 2.9e-11 17.0 18.0
50 4 0.94 0.97 0.025 5.3e-10 6.0 4.08
50 10 0.88 0.95 0.043 8.1e-09 14.0 9.67
100 4 0.92 0.99 0.071 8.1e-09 6.0 4.2
100 10 0.85 0.98 0.023 2.9e-11 19.0 11.07
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Table A.2: Full PSO-FSW(BCR) Results

Algorithm D Clusters µbase µtest σtest p-value #clusbase #clustest

AffinityProp

2 4 0.60 0.67 0.017 2.9e-11 34.0 6.67
2 10 0.67 0.84 0.028 2.9e-11 37.0 10.50
50 4 0.52 0.59 0.053 2.9e-11 11.0 8.83
50 10 0.55 0.57 0.020 8.1e-09 29.0 24.25

100 4 0.54 0.63 0.028 5.3e-10 12.0 8.92
100 10 0.58 0.61 0.023 8.1e-09 28.0 24.00

Agglomerative

2 4 0.85 0.84 0.020 1.02e-07 4.0 4.0
2 10 0.57 0.91 0.035 2.9e-11 10.0 10.0
50 4 0.51 0.63 0.12 2.9e-11 4.0 4.0
50 10 0.43 0.52 0.042 2.9e-11 10.0 10.0

100 4 0.49 0.74 0.034 2.9e-11 4.0 4.0
100 10 0.40 0.51 0.023 2.9e-11 10.0 10.0

DBSCAN

2 4 0.72 0.57 0.061 5.3e-10 7.0 3.0
2 10 0.87 0.38 0.0092 2.9e-11 11.0 2.25
50 4 0.70 0.76 0.10 0.18 5.0 3.17
50 10 0.87 0.33 0.0043 2.9e-11 14.0 3.42

100 4 0.78 0.90 0.14 9.2e-06 6.0 4.41
100 10 0.82 0.34 0.013 2.9e-11 15.0 3.0

KNN-Clus

2 4 0.85 0.87 0.039 0.027 4.0 4.67
2 10 0.62 0.75 0.0051 2.9e-11 17.0 10.17
50 4 0.94 0.95 0.082 1.0e-07 6.0 3.83
50 10 0.88 0.86 0.24 9.2e-06 14.0 7.41

100 4 0.92 0.98 0.083 5.32e-10 6.0 3.83
100 10 0.85 0.99 0.012 2.9e-11 19.0 10.08

60



Appendix B

Full Results for PSO-FSWE

This section of the appendix displays the detailed results for each dataset and test condition
for both PSO-FSWE(CSC) and PSO-FSWE(BCR). Each row in each table is a summation of
4 independent trials. Because of the small number of trials per dataset caution is recom-
mended in drawing conclusions from these tables.

Table B.1: Full PSO-FSWE(CSC) Results

Algorithm D Clusters µbase µtest σtest p-value #clusbase #clustest

AffinityProp

2 4 0.60 0.89 0.0076 0.021 34.0 3.0
2 10 0.67 0.82 0.040 0.021 37.0 11.5
50 4 0.52 0.57 0.047 0.021 11.0 10.0
50 10 0.55 0.56 0.021 0.25 29.0 27.8
100 4 0.54 0.57 0.020 0.021 12.0 10.8
100 10 0.58 0.61 0.022 0.021 28.0 24.8

Agglomerative

2 4 0.85 0.85 0.056 0.25 4.0 4.0
2 10 0.57 0.92 0.035 0.021 10.0 10.0
50 4 0.51 0.75 0.070 0.021 4.0 4.0
50 10 0.43 0.48 0.024 0.25 10.0 10.0
100 4 0.49 0.71 0.045 0.083 4.0 4.0
100 10 0.40 0.49 0.016 0.021 10.0 10.0

DBSCAN

2 4 0.72 0.90 0.0 0.021 7.0 3.0
2 10 0.87 0.96 0.017 0.021 11.0 10.3
50 4 0.70 0.74 0.14 0.25 5.0 4.8
50 10 0.87 0.34 0.022 0.021 14.0 5.3
100 4 0.78 0.77 0.041 1.0 6.0 6.3
100 10 0.82 0.91 0.020 0.021 15.0 11.3

KNN-Clus

2 4 0.85 0.99 0.0047 0.021 4.0 4.3
2 10 0.62 0.79 0.020 0.021 17.0 19.5
50 4 0.94 0.97 0.0034 0.021 6.0 4.0
50 10 0.88 0.33 0.0018 0.021 14.0 2.0
100 4 0.92 0.83 0.20 1.0 6.0 3.5
100 10 0.85 1.0 0.0038 0.021 19.0 10.5
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Table B.2: Full PSO-FSWE(BCR) Results

Algorithm D Clusters µbase µtest σtest p-value #clusbase #clustest

AffinityProp

2 4 0.60 0.67 0.012 0.021 34.0 6.5
2 10 0.67 0.82 0.056 0.021 37.0 12.3
50 4 0.52 0.59 0.033 0.021 11.0 9.3
50 10 0.55 0.58 0.032 0.021 29.0 25.0
100 4 0.54 0.56 0.035 0.25 12.0 10.0
100 10 0.58 0.59 0.014 0.25 28.0 28.0

Agglomerative

2 4 0.85 0.85 0.019 0.56 4.0 4.0
2 10 0.57 0.91 0.014 0.021 10.0 10.0
50 4 0.51 0.55 0.029 0.25 4.0 4.0
50 10 0.43 0.51 0.026 0.021 10.0 10.0
100 4 0.49 0.76 0.054 0.83 4.0 4.0
100 10 0.40 0.50 0.024 0.021 10.0 10.0

DBSCAN

2 4 0.72 0.56 0.0 0.021 7.0 3.0
2 10 0.87 0.38 0.0081 0.021 11.0 2.3
50 4 0.70 0.63 0.064 0.021 5.0 4.8
50 10 0.87 0.18 0.15 0.021 14.0 3.0
100 4 0.78 0.81 0.14 1.0 6.0 5.0
100 10 0.82 0.34 0.016 0.021 15.0 3.0

KNN-Clus

2 4 0.85 0.84 0.033 0.25 4.0 4.8
2 10 0.62 0.73 0.028 0.021 17.0 11.5
50 4 0.94 0.64 0.17 0.021 6.0 2.5
50 10 0.88 0.49 0.27 0.25 14.0 4.0
100 4 0.92 0.65 0.20 0.25 6.0 2.5
100 10 0.85 0.98 0.013 0.021 19.0 10.0
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Appendix C

Baseline Algorithm Parameter
Selection

This section of the appendix displays the results of algorithms utilising different parameters
on datasets with the same dimensionality and clusters as those used in testing. Considering
that all used baseline clustering algorithms are largely deterministic (with the exception of
tie-breaking in DBSCAN), each of these entries uses a single trial. Where datasets are used
they are datasets with the same characteristics as those used for testing.

Table C.1: Selecting K in KNN-Clustering

Value of K Mean F-Score Over All Datasets
2 0.74
3 0.79
4 0.71
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Table C.2: Selecting DBSCAN Parameters

(a) Mean F-Score for Datasets with Dimensionality 2

ε

0.1 0.2 0.3 0.4 0.5 0.6

Minimum Samples
4 0.58 0.64 0.73 0.76 0.73 0.69
5 0.58 0.69 0.75 0.78 0.72 0.68
6 0.57 0.72 0.75 0.76 0.71 0.66

(b) Mean F-Score for Datasets with Dimensionality 50

ε

0.1 0.2 0.3 0.4 0.5 0.6

Minimum Samples
4 0.18 0.25 0.38 0.47 0.46 0.45
5 0.16 0.29 0.49 0.46 0.46 0.45
6 0.15 0.30 0.47 0.46 0.45 0.45

(c) Mean F-Score for Datasets with Dimensionality 100

ε

0.1 0.2 0.3 0.4 0.5 0.6

Minimum Samples
4 0.19 0.23 0.37 0.45 0.45 0.44
5 0.16 0.33 0.48 0.46 0.45 0.43
6 0.15 0.35 0.45 0.46 0.45 0.43
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Appendix D

Artificial Noise Selection

This section of the appendix displays the results on various datasets of utilising 3NN-Clustering
with PSO-FSW(BCR) using a small sample of possible values for the artificial noise parame-
ter. The parameter was selected to maximise overall F-Score on these datasets, which share
charactaristics with the datasets used for testing. The best F-Score for each dataset is bolded.

Table D.1: Selection of the Artificial Noise Parameter for BCR

Artificial Noise D #Clusters F-Score BCR

0.0

2 4 0.83 6567.89
2 10 0.75 11838.57
50 4 0.80 inf
50 10 0.33 inf
100 4 0.97 inf
100 10 0.89 inf

0.1

2 4 0.83 6282.32
2 10 0.72 9955.01
50 4 0.86 7601.55
50 10 0.72 24745.29
100 4 1.0 10064.55
100 10 0.99 19947.82

0.2

2 4 0.79 4889.78
2 10 0.75 9264.97
50 4 0.54 6736.25
50 10 0.47 18224.70
100 4 0.96 2013.96
100 10 0.96 3646.89

Note: ’inf’ denotes an overflow in calculating the BCR, and is trivially treated as greater
than all numbers.
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Appendix E

DBSCAN and PSO-FSW(BCR)

This section of the appendix displays the results where the BCR excluded datapoints con-
sidered outliers by DBSCAN during calculations.

Table E.1: Results of PSO-FSW(BCR) with DBSCAN, Outliers not used in BCR Calculation

D Clusters F-Score #Assigned Datapoints #Outliers BCR #Clusters
2 4 0.56 213 6 6599.07 2
2 10 0.38 628 4 40677.80 2
50 4 0.52 194 52 11988.75 2
50 10 0.35 651 154 64778.91 2

100 4 0.53 194 60 43873.21 2
100 10 0.34 627 120 181577.65 2
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