
VICTORIA UNIVERSITY OF WELLINGTON
Te Whare Wānanga o te Ūpoko o te Ika a Māui

School of Engineering and Computer Science
Te Kura Mātai Pūkaha, Pūrorohiko

PO Box 600
Wellington
New Zealand

Tel: +64 4 463 5341
Fax: +64 4 463 5045

Internet: office@ecs.vuw.ac.nz

A Counterfactual Visualisation
System for eXplainable Machine

Learning

Caitlin Fisher

Supervisors: Dr Andrew Lensen, Dr Stuart Marshall
and Hayden Andersen

Submitted in partial fulfilment of the requirements for
Bachelor of Engineering with Honours.

Abstract

Machine Learning (ML) is a subset of Artificial Intelligence (AI) that can be
used to solve large and complex tasks. A big issue within ML is the lack of
interpretability. This issue affects people working with these ML models, as it
can be unclear how the models are producing the decisions/outputs. There-
fore, eXplainable Machine Learning (XML) has been developed to help improve
the interpretability and understandability of ML models. A type of XML is an
algorithm called counterfactuals, which analyses a specific instance in the data
to explain. Counterfactual explanations improve interpretability by identifying
feature values that need to be changed to allow for an altered prediction. This
project proposes and prototypes a website that implements counterfactual algo-
rithms and information visualisation techniques. Via the website, you can ma-
nipulate and filter the data to explore the counterfactual algorithm and use dif-
ferent graphs such as tables and bar charts to display the counterfactual results.
We performed a usability study on our website and a matrices-based evaluation
of our algorithm to identify issues for future work.

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivations . 1
1.3 Goals . 1
1.4 Target Audience . 2
1.5 Contributions . 2

2 Background and Related Work 3
2.1 The Problem . 3
2.2 Interpretation vs Explanation . 4
2.3 Counterfactual Algorithms . 4

2.3.1 Taxonomy . 4
2.3.2 Existing Counterfactual Algorithms . 5
2.3.3 Limitations . 6

2.4 Visualisation . 6
2.5 Proposed Solution . 7

2.5.1 Requirements . 7

3 Design 8
3.1 User Model Planning . 8

3.1.1 Persona . 8
3.1.2 Potential Use Case . 8

3.2 Software Architecture . 9
3.3 Wireframes and Designs . 10

3.3.1 Potential Graphs . 11
3.4 Design choices . 12

3.4.1 Layout . 12
3.4.2 Project Functions . 13
3.4.3 Filtering . 13
3.4.4 Counterfactual Output . 14

4 Implementation 15
4.1 Technology . 15
4.2 Machine Learning Model . 15
4.3 Growing Sphere Counterfactual . 16
4.4 Data . 17
4.5 Visualisation . 17

4.5.1 Counterfactual Explanation . 18
4.6 Requirements . 19

i

5 Evaluation 20
5.1 Usability Testing . 20

5.1.1 Aim . 20
5.1.2 Method . 20
5.1.3 Pilot Study . 22
5.1.4 Results . 22
5.1.5 Discussion . 24

5.2 Counterfactual Algorithm Testing . 25
5.2.1 Aim . 25
5.2.2 Method . 25
5.2.3 Results . 26
5.2.4 Discussion . 27

6 Conclusion 29
6.1 Summary of Key Takeaways . 29
6.2 Future Work . 30
6.3 Key Achievements . 30

ii

Chapter 1

Introduction

1.1 Problem Statement

Artificial Intelligence (AI) has now become a big part of our everyday lives and allows sys-
tems to mimic human behaviour. A sub-set within AI is Machine Learning (ML), which uses
a range of different methods to improve the models by learning through its experiences and
is used in systems to achieve complex tasks and make decisions. Due to ML becoming
more advanced and playing bigger roles, we need to ensure that ML models are designed,
constructed, and used in ethical and moral ways. Alongside model accuracy, ethical and
moral obligations are important to consider in ML as the model needs to be; fair, to ensure
the decisions being made contain no basis; robust, to make sure systems are stable and can
withstand/overcome unfavourable conditions; and, to ensure that the model and/or de-
cision are easy to perceive [1]. However, the problem we face is that ML systems can be
extremely complex, making it difficult to interpret the decisions made [2].

1.2 Motivations

Due to these issues, eXplainable Machine Learning (XML) is currently being researched and
implemented to achieve a better interpretation of the system to ensure ethical and moral
obligations are met. While there are many different XML methods, an excellent method for
solving the interpretability issue when using machine learning models is counterfactuals.
Counterfactuals are used to identify changeable features in a dataset that could be altered to
achieve a different outcome, they produce specific interpretable outputs for individual data
points [1]. It can be described as “If input X had changed, output Y would have changed”
or “If input X had not occurred, output Y would have changed” [3]. However, there is still
a lack of options available for people to use and visualise XML and counterfactual outputs.

Therefore, this project will develop a proof-of-concept visualisation system to explore
how visualisation techniques can support counterfactual algorithms and help meet ethical
and moral obligations, such as the existence of biases in data, around the use of ML. Com-
bining the counterfactual algorithm with data visualisation will improve the interpretability
of ML decisions and counterfactual explanations.

1.3 Goals

The primary goal of this project is to develop a platform to generate interpretable counter-
factual explanations. This goal can be achieved by completing these sub-goals:

1

• To implement a counterfactual algorithm that can be used on a wide range of datasets.

• To implement a visualisation system that works with datasets and displays counter-
factual explanations in an interactive way. This includes: allowing users to explore
counterfactuals through filtering aspects of the dataset; providing useful visualisa-
tions by displaying counterfactuals of each instance; allowing users to analyse both
textual and graphical outputs of the counterfactuals. Through the visualisation sys-
tem, users will achieve a better understanding of complex machine learning systems
and how counterfactuals are used. The proof-of-concept prototype will use a single
dataset but should be designed for a general case.

• To evaluate the system using two methods. Firstly, to test the counterfactual algorithm,
we will use different metrics such as Euclidean and Manhattan distance alongside
evaluating how many features are changed and how much the features have been
modified. This is to check the performance and fidelity of the algorithm. Secondly,
usability testing will review the visualisation system and counterfactual explanations
by evaluating the usability and intuitiveness of the visualisation system. It will also
determine if the counterfactuals are informative and interpretable, by ensuring the
tester can understand the counterfactual.

1.4 Target Audience

This website is aimed at people who have basic knowledge of AI and/or ML. This is because
the primary goal of this system is to help people explore counterfactual explanations to have
a better interpretation of the dataset which may be difficult for those who do not already
have a background in AI and/or ML. XML and counterfactuals may also be more complex
for those who do not have basic knowledge in this area. For people who do have domain
knowledge and are interested in exploring their dataset through counterfactuals, it will be
an easy and quick tool to learn about the basic functionality of these models and will show
the effectiveness of these systems

1.5 Contributions

The project offers the following contributions:

1. A design for a tool where counterfactual explanations can be explored and displayed
through; filtering and extracting information on a dataset; producing counterfactual
explanations using the built-in counterfactual algorithm; exploring counterfactual ex-
planations using different graphs and tools.

2. A proof-of-concept prototype that demonstrates the functionality of the design, with
discussions around the implementation of the prototype and future improvements.

3. An evaluation of the current prototype, that measures the reliability and robustness of
the algorithm, alongside a usability test to evaluate usefulness, user-friendliness and
functionality.

2

Chapter 2

Background and Related Work

2.1 The Problem

A big challenge that ML faces is the ability to create a model that is both interpretable and
complete (complete meaning as accurate as possible) [4]. It is often found that ML models
have either one or the other, as “it is difficult to achieve interpretability and completeness
simultaneously” [4]. Due to this, ML models often lack interpretability and do not provide
information on how the system reached a specific decision. For those people who would
like to check the robustness (robust meaning is the algorithm’s performance consistent and
stable), no information is provided to explain how the model reached its decision. Often
ML models lack interpretability even for people who understand the internal logic of the
system. We can see this when comparing a decision tree and a deep neural network model
(DNN).

A decision tree is a machine learning model that is considered to have a simple interpre-
tation when the size of the decision tree is not extensive. By starting at the root node, you
cascade down the tree through the nodes and edges, which define subsets within the dataset
[3]. The final prediction comes when the leaf node is reached. When this tree is short, with
only a few nodes, it provides a straightforward and human-friendly explanation. However,
the bigger the tree gets the more nodes there are making it harder to interpret and explain
[3]. For example, a tree with 10 nodes is interpretable as seen on the left-hand side of Fig-
ure 2.1 where links and nodes are clear. However, when you start increasing the number
of features and variables, the nodes and links will start to increase. Therefore, the tree will
become less interpretable, seen on the right-hand side of Figure 2.1. Consequently, large
decision trees that support complexity have the side-effect of being less interpretable. [3].

Figure 2.1: Left hand side: Small decision tree [5]. Right hand side: Big decision tree [6].

Whereas a DNN can be used for many different machine learning tasks with great com-
pleteness, it lacks interpretability even with a small model [7]. DNN contains many layers

3

of nodes and weights in between the input and output layers [8]. Due to the many lay-
ers and numerical weights, it does not provide reasonable interpretation and contains no
information about how it reaches its predictions.

The objective of the project is to implement a counterfactual algorithm that can provide
this interpretability for machine learning models while keeping its complexity and com-
pleteness. In cases such as small decision trees where it produces an interpretable model,
counterfactuals may not provide more interpretability to the model as it is already easy to
understand the outputs and does not need extra explanation. Therefore, counterfactuals are
more needed for complex, complete and non-interpretable models such as DNN and large
decision trees.

Another problem is how to create a visualisation tool that can present counterfactuals in
a useful way. Therefore, the project will also aim to demonstrate a visualisation tool that is
intuitive to use, and that can display useful counterfactual information.

2.2 Interpretation vs Explanation

Interpretation and explanation are commonly used when discussing XML and have very
similar definitions. However, the differences between the two can be seen as interpretability
focuses on the system over the outcome and measures the level of understanding of how the
outcome is predicted. Explainability focuses on providing an explanation for the outcome
over how the system came to this decision.

2.3 Counterfactual Algorithms

There are many different counterfactual algorithms each having its own strengths and aims
for the algorithm. The counterfactual algorithm needed for this project is one that can work
with multiple different datasets, not an algorithm that is fitted to a specific dataset. Due to
different datasets being used, the counterfactual algorithm also needs to work with multiple
different black-box models, as different types of datasets work better on certain models.
Also, we want to minimise the number of features that are changed over how big the change
is within a feature. Due to the scope and time limit for this project, the algorithm will need
to be available to the public and easy to understand/implement within the scope.

2.3.1 Taxonomy

Taxonomy is a “scheme of classification in which things are organized into groups or types.”
[3]. This is useful to consider as it helps design, develop and evaluate systems [3]. There are
four aspects to consider with counterfactual taxonomy: type, model, scope and result type.

Type Type distinguishes between intrinsic and post hoc. Counterfactuals are post hoc
which is an XML technique that applies to a method that analyses and explains a model
after training. This project will be using a black-box model (random forest) to first train on
the data then the counterfactual method will be applied.

Method The method can either be model-specific or model-agnostic (can work on any
model). Counterfactuals are model-agnostic, as many different models can be used. How-
ever, in the project, we will use a specific model.

4

Scope The scope can either be local (explains specific or groups of predictions) or global
(explains the model as a whole). Counterfactual’s scope is local as they can only explain
one prediction at a time. This can be seen as a limitation of the counterfactual method, as
it restricts the use of the method and could take a long time to analyse large amounts of
predictions. Its advantage is that it is very specific, and can provide in-depth explanations.

Result Type The result type of a counterfactual method is a data point. The method re-
turns existing or new data to make a model more interpretable, making it a data point type.
Counterfactual explanations do this by taking a data point and returning a similar data point
that contains the smallest changes to it so that the prediction changes.

2.3.2 Existing Counterfactual Algorithms

There are many counterfactual algorithms that could be used for this project. We will be us-
ing at least one of these algorithms to create the visualisation system. Here, we will discuss
a few different counterfactual algorithms.

Growing Sphere

Growing Sphere is a counterfactual algorithm that uses a “generative approach that locally
explores the input space of a classifier to find its decision boundary” [9]. The growing
sphere uses a greedy approach, selecting the best, most obvious or most convenient op-
tion currently available [10]. This greedy approach is used to find the best counterfactual
explanation by looking at all instances in all different directions. The two main steps in this
method are generation and feature selection. The generation step will generate the decision
boundary of the classifier. Feature selection is then used to minimise the number of features
when making vectors of the explanation.

Figure 2.2: Growing Sphere Steps

DiCE

DiCE is a counterfactual algorithm that stands for Diverse Counterfactual Explanations [11].
This algorithm was created as a counterfactual explanation that aims to satisfy two proper-
ties: feasibility across users’ context; diversity of the counterfactuals. Therefore, DiCE was
created for “generating and evaluating a diverse set of counterfactual explanations based on
determinantal point processes.” [11].

The main advantage of this method over other counterfactual methods is that it pro-
vides a solution that generates counterfactuals with “substantially higher diversity for these
datasets.” [11]. Also generating a high number of unique and valid counterfactuals.

5

MACE

MACE stands for Model-Agnostic Counterfactual Explanation which aims to generate the
nearest counterfactual explanations using any given distance function while supporting any
plausible constraints [12]. This is done by mapping the nearest counterfactual problem into
a sequence of satisfiability (SAT) problems, by expressing both the predictive model and the
distance function as logic formulae.

The testing of this algorithm showed that it is able to generate plausible and diverse
counterfactuals at “provably optimal distances” for any dataset [12].

2.3.3 Limitations

A limitation of counterfactual explanations is their ability to analyse groups of instances, as
counterfactual algorithms are specific to each instance. Little research has gone into review-
ing and visualising groups of counterfactual explanations.

Another limitation with XML and counterfactuals is the need to still have some domain
knowledge in both XML and ML to understand the explanations. For those who want to
learn or cannot implement an XML algorithm, it may be hard to explore these algorithms.
Also without prior knowledge, the output may be difficult to understand. While XML has
improved the interpretability of ML, it can still be improved upon using data visualisation
methods. This can also help those with little domain knowledge to understand the explana-
tions.

2.4 Visualisation

The aim of visualisation is to “aid our understanding of data by leveraging the human vi-
sual system’s highly tuned ability to see patterns, spot trends, and identify outliers” [13][14].
Visualisation tools that are well-designed can provide an alternate way to present informa-
tion other than calculations and data. Using visualisation is an effective way of making
XML (counterfactual explanations) more comprehensive. It was stated in [13], that the pref-
ered graphical representations are spatial positions such as bar charts and scatter plots, as it
“leads to the most accurate decoding of numerical data and is generally preferable to visual
variables such as angle, one-dimensional length, two-dimensional area, three-dimensional
volume, and colour saturation” [13]. They are simple, accurate and able to display vari-
ables/values clearly.

The most important step for developing an effective visualisation is knowing the pur-
pose and audience of your visualisation. What do they want to see? and/or what might they
want to focus on? [13]. By narrowing down the purpose, we can decide how to transform
the data into graph visualisation tools. The data we want to present is the counterfactual
explanation, and to show the changes the counterfactual has recommended.

A few key data visualisation tasks that will be important to develop visualisations for
counterfactual explanations are [15]:

• Filter: Filtering out uninteresting/irrelevant data. This will ensure the visualisation
only displays the information needed to aid our understanding and to find important
patterns.

• Overview: Gain an overview of a collection of data. This will provide quick informa-
tion and display simplified results.

• Details-on-demand: Select an item or a group of indexes to target specific details when
needed.

6

2.5 Proposed Solution

This project will aim to provide a tool to better understand decisions made by ML models.
The project will develop a visualisation system for displaying counterfactual explanations.

XML aims to provide “fairness, robustness, transparency, and interpretability” [1] to
inform and help people understand a decision made by an ML system. It also aims to
provide information on what needs to be changed to reach the desired result [16].

This project will use counterfactuals, which are used to identify features in a dataset, that
could be altered to achieve a different outcome [1][16]. They provide explanations about ML
models’ decisions to help people understand their outcomes. Counterfactuals are ideal for
people who at least have basic theoretical knowledge of AI and/or ML as they do not have
to understand the internal logic of the system to understand the counterfactual. When a
counterfactual algorithm is applied to a model, it will produce a counterfactual for each
instance in the dataset.

The visualisation system will be the focus of the project. This is an important step for
this project as it will provide the resources for users to review a dataset and a black-box
model. Also, pinpoint features, classes and instances within the dataset to analyse specific
information. It will do this through a filtering system that will allow a user to alter the
dataset so they can analyse different areas of the data. After the counterfactual is found, the
system will display the counterfactual both textually and graphically. This will allow the
user to read and analyse the produced counterfactual in two different ways to make it more
interpretable.

2.5.1 Requirements

The following requirements have been produced after reviewing the proposed solution:

1. The system needs to be able to show an overview of each counterfactual explanation.

2. The system must allow the user to manipulate and filter the dataset.

3. The system must allow the user to analyse both a single counterfactual explanation
and multiple counterfactual explanations.

4. The system needs to be able to highlight the changes within the explanation.

5. The system must allow a user to import their own data.

6. The system needs to be accessible.

7

Chapter 3

Design

The chapter will introduce the primary persona, use case scenarios, designs and software
architecture for the system. Justification on design choices will be made to determine which
design best suits the system requirements.

3.1 User Model Planning

In the background, it was shown that a visualisation system can be used to improve the
interpretation of XML/counterfactual explanations. Now we need to determine useful use
cases of this system. The user model plan will present the persona and use cases for this
system so that designs can be made that fill these requirements.

3.1.1 Persona

Hannah Richardson is a third-year university student studying computer science, majoring
in Artificial Intelligence. She has always had an interest in different ML areas and wants
to explore new topics in her spare time. While she is excellent with computers and learn-
ing new things, Hannah does not have a lot of time due to university. Hannah learns best
through images, graphs or short texts. Therefore, she looks for intuitive and effective visu-
alisation tools to help her explore different ML topics.

3.1.2 Potential Use Case

This section will present possible use cases for the counterfactual visualisation system to
help understand the design’s purpose and functionalities. Only two use cases are displayed
but they can all be seen in Appendix A or accessed through GitLab [17].

Scenario 1: Select one instance and find a counterfactual.
Hannah wants to view the counterfactual explanation for a specific instance. Therefore,

she inputs the index of the counterfactual into the filter instance section and clicks the ’Find
Counterfactual’ button. The counterfactual will appear below the table.

User System
Selects one instance.
Clicks the’ Find Counterfactual’ button.

Runs the counterfactual algorithm on the one instance.
Display results in textual form.

8

Scenario 2: Select a specific class to analyse. Hannah wants to see if a specific class in
the datasets have similar counterfactual outputs.

User System
Selects a class in the filter section.
Clicks the’ Find Counterfactual’ button.

Runs the counterfactual algorithm instances.
Display results in textual form and in a graph.

3.2 Software Architecture

Figure 3.1: Diagram of software architecture

The diagram of the system architecture, Figure 3.1, displays the different components, the
user, web applications and the counterfactual logic and demonstrates the relationship be-
tween each component. The web application component was separated into small spe-
cialised functions. Each component and function was given a name to express its function
and links to other components/functions to demonstrate the flow of the system. Through
this diagram, we can see the modularity and cohesiveness of the overall system.

The user component represents what an individual user needs to provide to the system.
At the start of the user interaction with the web application, they will need to provide a .csv
file that contains a dataset they want to review.

The web application will then take this .csv file and convert it into a readable data table
that will be displayed on the website. If a user decides to filter/manipulate this data the

9

Requirement Description State

R1 Overview of counterfactual explanation Yes
R2 Manipulate and filter data Yes
R3 Analyse counterfactual explanations Yes
R4 Highlight changes Yes
R5 Import Yes
R6 Accessible Yes

Table 3.1: State of requirements within the software architecture

system will use the current data displayed in the table and alter the data by changing the
selected feature, classes and/or the index range. Once this has been applied it will be passed
back to the data table so that the updated dataset can be displayed. If the target class is
changed, the counterfactual algorithm will be altered, as the target class is changing the
algorithm, not the data. Using the data table a heatmap can be generated to find correlations
between features and the class.

Once the data table displays what the user wants to review, the user can click a button
to start the counterfactual algorithm. This algorithm will produce a new data point that can
be used to form an explanation.

The counterfactual explanations will then automatically be displayed both textually and
via tables to display what feature needs to be changed and display the values changes. Using
the counterfactual explanation a bar chart can be displayed to graph the feature changes.

As seen in the diagram, the system architecture does not require a database as the graphs
used in the design do not need counterfactual explanations to be stored. However, a database
will need to be added if a graph were to be implemented that needs previous explanation
data points. This would add a database component to the system architecture.

Table 3.1 shows that the system architecture meets all the requirements for the system.

3.3 Wireframes and Designs

Page Title

Filter

Section
options for
filtering

Counterfactual
Explanation

Data Table Heatmap Bar Chart

Textual

ExplanationGraph Component

Figure 3.2: Wireframe of design 1

Design 1 seen in wireframe Figure 3.2, offers filtering, graphs and the counterfactual
explanation all on one page. The pink rectangles are buttons that can be selected to swap
between different graphs and tables. Provides a platform for future expansion as many more
graphs could be added by just adding a button.

10

Figure 3.3: Wireframes of design 2

Design 2 seen in wireframes Figure 3.3, is more spaced out compared to design 1. How-
ever, offers all the same features.

Page Title

Filter

Section
options for
filtering

Image

Data Table

Image

Counterfactual
Table

Image

Image

Bar Chart

Heatmap

Graphs Options

Graph Component

Current Graph Title

Figure 3.4: Wireframe of design 3

Design 3 seen in wireframe Figure 3.4, is similar to design 1, however, the textual coun-
terfactual explanations are seen as a graph option that can be clicked on to view in the
’Graph Component’. Each option is also paired with an image so users can get an idea of
the graph they are selecting.

3.3.1 Potential Graphs

Animated Bubble Chart

A bubble chart may help analyse multiple counterfactual explanations simultaneously, to
help identify patterns. By using this chart we can analyse the effects of the changes made to
each feature compared to how many other features were changed in the same explanations.
More information can be added as more counterfactual explanations are found. An issue
is that the bubble chart will need a lot of data to provide interesting patterns/analyse. If
data is lacking the chart may not display better results than a bar chart, however, be more
complex.

11

Figure 3.5: An example of a horizon graph

Time-Series Data: Horizon Graphs

A horizon graph could be used to compare different counterfactual changes in features. An
example of this can be seen in Figure 3.5, the line could be used to indicate the original
value to show how the explanation increases or decreases a value. Each feature could have
its own graph and they could be presented underneath each other to so correlations and
patterns between the features. This graph is very similar to the index chart however it is
clearly showing the changes it is making rather than the differences between feature values.
This would require past counterfactual explanations to be stored.

Bar chart

A bar chart could be used to compare the original feature value with the altered feature
value. It would be a very simple graph that would show the differences between numeric
features and the number of changed features for an instance. The bar chart would have
difficulty representing boolean or non-numeric valued features. Another issue would be for
groups of instances, it would only be useful for one instance at a time. However, no extra
data would be required and it does not need to store any data.

Heatmap

A heatmap would be a simple graph that could show the correlations between features.
While this graph would not provide any analysis for counterfactual explanations it could
provide more information to help users understand changes made in the explanation.

3.4 Design choices

Design 2 (Figure 3.3) has been chosen as the design to implement, due to the design being
more spaced out and separating the website into two sections: (1) the original data that
can be filtered. (2) the counterfactual explanations and graphs. The other design would
have struggled to display large datasets and users may get confused about which data ta-
ble/graphs can and cannot be filtered.

3.4.1 Layout

The two wireframes seen in Figure 3.2 are the layout for the design. What is not clearly
seen in these figures is that the body screen is scrollable. The overview of the data and the
filtering section are seen first. The user can scroll down to see the counterfactual output.
This is done as it follows Shneiderman’s Information Seeking Mantra [18]. Which states the

12

overview always comes first. Also before counterfactuals can be found, filtering of the data
can be done.

In the overview section seen on the left-hand side of figure 3.3, the data table is given
more emphasis through its size on the screen over the filtering options (Requirement 2). This
will guide the user’s focus to the data table, as the data provides most of the information.
The first column of the data table will be the indexes of the instances. This was done to
identify the different instances so the users can correctly filter them. Also, the data may
contain many different features and over a thousand instances, therefore the bigger the table,
the easier it will be to read and understand the data.

The counterfactual section in the wireframe takes up the entire page as we expect the
user’s attention will only be on the counterfactual output. The layout currently has been
split between an overview of the explanations and options for further analysis using graphs
(R1 and R3). A textual explanation and two tables (one for the original data and another
for the counterfactual explanation) will be used for an overview of both single and groups
of counterfactuals (R1 and R3). The tables will be able to provide further analysis of each
features changes (R4). While the heatmap and bar chart will allow for deeper analysis (R3
and R4).

3.4.2 Project Functions

The main functions of the design include:

• Import: Users will be able to import their own data to use in the system (R5).

• Dataset display: The dataset display would present the data that the system is using.
It would be displayed in a table format with all the features and instances.

• Filtering: This function will allow the user to alter different aspects of the dataset (R2).
This includes features, classes and instances. This will be done by creating a sidebar
with all available filters that could be made.

• Counterfactual: The algorithm will use the filtered data to find the counterfactual for
each instance.

• Counterfactual display and analyses: different graphs and textual outputs will be gen-
erated to review and analyse the counterfactual (R1, R3, R4). Four different methods
will be used: (1) textual output, (2) two tables to compare data before and after coun-
terfactual, (3) heatmap and (4) bar chart of the changed features in an instance.

Website

We have chosen a website for our application and will be designed for a standard-sized
desktop (1440 x 1024 pixels) over a mobile app or mobile screen due to the large amounts of
data that would be hard to read on a phone due to the small screens. Users are also more
likely to look for these learning tools online. Therefore, making a website would be more
accessible (R6). Also, the website requires no installation to start using their tool.

3.4.3 Filtering

We decided to include a filtering section that allows the user to filter the data as it helps
achieve the main aim of this project which is to allow users to explore counterfactuals. By
allowing users to adjust the data, they are able to look into more specific areas of the data
and find more patterns. Included in the filter section are:

13

• Select the features, users can remove/add features from the view of the dataset that
will be used for the counterfactual.

• Select a specific class to review or select all classes.

• Select a target class. This will allow the growing sphere algorithm to change features
to achieve this target class.

• Select an index range, where the dataset starts and where it ends. This is an important
filtering element as datasets can contain hundreds of instances and the algorithm will
take hours to find all the counterfactuals for each instance. Therefore, by only targeting
a range of 5 instances, the counterfactual result will be achieved faster.

3.4.4 Counterfactual Output

We have used multiple different ways to present the counterfactual output. We have a basic
textual output and multiple graphs to help understand the counterfactual.

Textual Output

A simple counterfactual explanation can be described through textual output, also called a
counterfactual statement. For example: “If X was changed to a specific value, Y could be
changed to a specific Z” or “starting from instance C, change A and B to get a counterfactual
instance” [4]. These counterfactual explanations would be interpretable for each instance.
However textual outputs may be more overwhelming when evaluating a large group of
instances.

Graphical Output

There are many different graphs and charts that we could use to produce this output. How-
ever, a lot of these effective and complex graphs need a lot of data from the counterfactuals.
This would be difficult within the time frame of this project and would require data to be
stored.

Therefore, we used three different ways that are less complex to present the counterfac-
tual and its changes and patterns. (1) Produce two tables, one for the current data and one
for the data after being put through the growing sphere algorithm, Figure 3.2. The coun-
terfactual table shows the features that were affected and changed by the algorithm. Also
highlights the feature values with green if it was increased or red if it was decreased. We
used these colours as they are universal indicators for increasing and decreasing. (2) Provide
a heat map graph of how each feature correlates to the others. This shows the relationships
between two variables help identify patterns with the changes made using the growing
sphere algorithm. (3) Lastly, is a bar chart, that takes a single instance to compare the differ-
ences between the current value and the counterfactual changes. This bar chart presents the
features that have been altered in a simple format, that easily shows the changes.

14

Chapter 4

Implementation

4.1 Technology

Python was chosen as the language for my project over Java and react (JavaScript). Python
has been heavily used throughout University courses meaning the language is familiar to
engineering and COMP/AIML students at Victoria University. Python is also a popular
choice for AI/ML applications due to their many advantages over other languages including
[19]:

• Concise and understandable

• Helpful libraries (such as SciKit-Learn) to make coding easier

• High development speed

While react’s primary use is for web development, we have less experience coding in
this language and Java and Python provide better libraries and resources for machine learn-
ing models. However, Python also contains different libraries for the visualisation of both
the data and websites. Plotly is a library that contains many great features which will be
beneficial when creating a graphical output of the counterfactual data.

Plotly also contains a library called dash that we will be using to create the website,
Counterfactual Explainer (CFE). While Java contains libraries for website development, we
have chosen python as it is more user-friendly as it is completely dynamic and Python pro-
grams are faster than Java programs [20]. It will also be faster to implement as we will not
have to swap between languages or merge two components together.

4.2 Machine Learning Model

The ML model used is the random forest algorithm. This algorithm was chosen as it per-
forms well with both classification and regression tasks, and can work with both categorical
and continuous variables. This means that it can perform using multiple types of data which
is important for the system, as users may input different datasets into the system. The model
is also very resistant to noise, missing values and outliers which may be necessary if there
are missing preprocessing steps. The Random Forest algorithm is very stable, which means
if new data points are introduced into the dataset, there would not be much affected on the
overall model. Random forest algorithms are complex when given large datasets, providing
a good example for displaying the benefits of counterfactuals.

15

This algorithm runs the given data from the web application component before the coun-
terfactual algorithm starts. This model is then used in the counterfactual algorithm to gen-
erate predictions for the new data points to check whether the counterfactual changes have
made an impact on the outcome. These predictions help identify possible counterfactual
explanations.

4.3 Growing Sphere Counterfactual

The counterfactual algorithm we have implemented is the Growing Sphere algorithm. This
algorithm supports the requirements discussed in section 2.3 and was easy to implement
within the scope. This method uses a “generative approach that locally explores the input
space of a classifier to find its decision boundary” [9]. This section will go into more depth
around the two main steps.

Generation

The generation’s main aim is to make observations in the features space in l2-spherical layers
around an instance x to find the closest enemy [9]. The enemy is a term used by the author
of the algorithm which is a term for a possible counterfactual, for the sake of consistency
we will continue to use this term. This enemy is the closest to the instance which is found
using the “pairwise distances”. Using two positive numbers a0 and a1, we can define (a0,
a1)-spherical layer SL around x [9, 21]:

SL(x, a0, a1) = Z ∈: a0 ≤ ||X− Z||Z ≤ a1 (4.1)

The first step in the generation algorithm is to create uniformly n observations in the
l2-ball of radius η and center x as SL(x, 0, η). To make sure that the generation step finds the
closest decision boundary, the radius is updated and repeats the first step until no enemy is
found in the first l2-ball, SL(x, 0, η) [9, 21].

η ← η/2 (4.2)

The generation algorithm will return the closest generated enemy e that was observed.
This is then passed onto the feature selection to make it more interpretable [21].

Feature Selection

After the closest enemy e is found from the generation step, the next step is to minimize the
l0 component of the cost function c(x, e) [9]. The aim is to reduce the number of features
changed in the counterfactual while still changing the output. This means we needed to
maximize the sparsity of the vector e-x so that:

f (e) ̸= f (x) (4.3)

The final result of the feature selection will be e∗ which is the final enemies identified in
this algorithm.

16

Algorithm Output

Figure 4.1: Counterfactual output

The output displays the number of enemies/features that the feature selection has identified.
It then displays the new feature values to show the changes that have been made. With these
changes, a textual counterfactual explanation is created stating what needs to be changed
for each instance.

4.4 Data

The current dataset used in the system is a water potability dataset that was found on Kaggle
[22]. Due to not having implemented the import dataset function yet, we have chosen this
dataset for implementing other components and evaluation. However, most of the system
architecture is not hard coded to allow for easy dataset changes. The aim of the dataset is
to identify if water is safe for human consumption. It contains nine features (ph, hardness,
solids, chloramines, sulfate, conductivity, organic carbon, trihalomethanes, turbidity) and is
a binary classification, where one means potable and zero means not potable.

Some pre-processing was done on the data, where any instance was removed if it had
a missing value, as we wanted to ensure the data was accurate. After pre-processing there
is a total of 400 instances. Due to the dataset being set in class order, meaning all classes
were grouped together, we shuffled the data to ensure we split the data with both types of
classes. Lastly, we added an index column in the data. This was done for the visualisation of
the data so that users can identify individual instances in the data and filter the index range.

While the system is currently only set up to use the pre-defined dataset, a small number
of changes would need to be done to the code so that users can import their own data.

4.5 Visualisation

We have been able to implement nearly all of the functions and design elements designed
in Section 3.2. We have followed the layout of the design closely as seen in Figure 4.2 and
4.3, with only a few changes. While implementing we changed the layout and some design
elements to improve usability and readability. The main layout change was the in the coun-
terfactual explanation section, where we set the two data tables that displayed the original
data vs the counterfactual changes to fixed (could not be changed). This was because these
changes are closely linked to the textual explanations and would also be useful to look at this
information while analysing the graphs. They are also displayed virtually not horizontally,
thus reducing horizontal scrolling and would be easier to read.

17

Figure 4.2: Layout of filtering section in CFE

Figure 4.3: Layout of counterfactual explanations and graphs in CFE

The filter component uses a combination of different elements such as a button, radio
button, checklist and text inputs. A checklist is used for the features sections to allow users
to select different features to review. The checklist will allow the user to select multiple
features to analyse. Whereas the classes and target filter sections use radio buttons, this
will limit the user to select just one class. This will mean that the user can either select one
class or all classes. The last filter section is the index range, we first used a range slider as
we thought it would be a more effective way of changing the range. However, the dataset
contains over 400 instances which made it difficult to accurately select the rows you want
and the numbers would have to be too close together making it hard to read. Therefore,
we used two text inputs, that were limited to numbers only within the dataset range. This
allows users to adjust the index range and select the instances they want to review.

The data table is created on a scrollable area where only the first few rows are seen. This
is so the data does not take up a lot of the page but the users can still view all the data.

4.5.1 Counterfactual Explanation

The implementation of the graphs was done using Plotly methods. Each graph has its own
button that after clicking presents the graph.

The bar chart, Figure 4.5, displays the original value and the counterfactual value for

18

Figure 4.4: Heatmap

Figure 4.5: Bar chart

each of the altered features of the instance’s counterfactual explanation. The features that
were not changed are not displayed on the chart, as this would be redundant information.
Currently, the bar chart is only developed for one instance at a time. So there is a text input
where the user can submit a specific instance they want to review.

4.6 Requirements

The following Table 4.1, displays what requirements were met after completing the imple-
mentation

Requirement Description State

R1 Overview of counterfactual explanation Yes
R2 Manipulate and filter data Yes
R3 Analyse counterfactual explanations Yes
R4 Highlight changes Yes
R5 Import No
R6 Accessible Partially

Table 4.1: State of requirements after implementation

R6 is only partially implemented as we have implemented it on a website which makes
it accessible (see Section 3.4), however, it is still being locally hosted which makes it unavail-
able to the public.

19

Chapter 5

Evaluation

We undertook an evaluation of the prototype, focusing on usability and algorithm robust-
ness. By evaluating both of these aspects of the project, we can identify strengths and weak-
nesses that inform future work.

5.1 Usability Testing

5.1.1 Aim

User testing will identify any bugs/issues in the visualisation system with respect to gulf of
execution (e.g. intuitiveness) and the gulf of evaluation (e.g. responsiveness and clarity) for
the counterfactuals [23].

5.1.2 Method

Expectations of Usability Testing

The main expectation in this evaluation is for the participants to be able to filter/manipulate
data and interpret the counterfactual explanations. However, due to the small amount of
time they have in this testing, it is expected they will not be experts or fully able to un-
derstand the counterfactual algorithm. During the completion of the tasks, it is predicted
that participants will find the filtering section comprehensive and will be able to distinguish
counterfactual explanation changes. The qualitative and quantitative results from the test-
ing are expected to display the strengths and weaknesses of the design and provide a means
of showing how successful the visualisation of the explanations and data is.

Participants

We have gathered five students from level-400 VUW engineering to be testers for the projects.
Only five participants were found for testing due to the scope of the project, however, it
meets the standard that will provide good and effective insight into my evaluation [24].
While no major statistical analysis can be made on a group this small, key challenges and
issues can be identified for evaluation and exploration. The following table presents each
participant’s attributes, the domain knowledge was done on a scale of 1(low)-5(high). Due
to participants being 400-level students it was expected for their XML/counterfactual and
water potability domain knowledge to be low. Each participant still fits into the persona be-
cause of their AI domain knowledge, however, their lack of domain knowledge does need
to be considered.

20

Participants Gender AI Domain
Knowledge

XML/counterfactual
Domain Knowledge

Water Potability
Domain Knowledge

P1 male 3 1 1
P2 male 3 1 2
P3 female 3 2 1
P4 female 3 1 1
P5 female 4 3 1

Table 5.1: The table displays the attributes of each of the participants in the evaluation.

Threat of Validity

Due to participants ranking low for domain knowledge for XML/counterfactual and water
potability, there is a risk that these participants are not truly representative of the persona.
This could mean that some results need to be taken at face value, as participants may express
confusion when using the system due to their lack of domain knowledge. This can be seen
later on with the dataset, as nearly all participants stated that their lack of understanding of
the dataset did have an effect on the usability of the system.

Another threat to the validity of the usability testing were all the participants were
friends and therefore may have tried to be nicer and provide more positive feedback than
negative. Strangers would have been a better option for participants, however, within the
scope of the project this was difficult.

Human Ethics Approval

Due to ECS gaining approval for usability testing for 400-level courses, no further approval
is needed aside from a consent form, which can be found in Section A.1. All participants are
400-level engineering students which met the requirements. Also, potentially sensitive in-
formation will not be gathered from the participants. This includes not revealing the names
of the participants within the report or to the supervisors, as they may be accessing one of
these participants in a course.

Method

To ensure usability testing is effective, a plan was created, which includes tasks, a script and
a questionnaire. Tasks were created using subsection 3.1.2. This ensured that we are testing
all aspects of the system. There are nine tasks in total, that review the text, filtering functions
and counterfactual explanation section. The script can be read in Appendix C.

The script was read aloud to the testers and created a structure for the testing. It con-
tains the tasks and any questions we would like them to answer while using the system, if
the participants were confused or unclear with any tasks or questions we would repeat or
reword the task/question to help them complete the testing. These questions identify how
they are feeling or what they may be struggling with. Lastly, there will be a questionnaire at
the end of the user testing session.

These questions are Likert scale (rating), short answer and ranking questions. There are
questions that ask the tester to rate different features and aspects of the system, such as the
counterfactual explanations and how easy it was to understand. This is so that weaknesses
in the system can be highlighted. For ranked questions, we ask the participant to elaborate
on why they gave it that ranking, to understand the results more.

21

5.1.3 Pilot Study

A pilot study was completed at the beginning of my evaluation using one person, P1. This
helped refine and test my usability method before testing on numerous participants.

P1 did not have any knowledge of water potability and the website CFE did not pro-
vide any clarity. This meant that he struggled to understand the meaning of the dataset.
Therefore, in the script, we included an introduction to the dataset. This was done instead
of adding an explanation of the data on my website because the website should not be hard
coded to one dataset.

The pilot study tested my usability testing process, including all tasks and the survey.
P1 identified some grammar issues that were fixed after the pilot study and found an issue
with the filtering of the features which meant that after submitting the data to find a coun-
terfactual explanation if you wanted to go back and change the features selected it broke
the system. This was fixed shortly after the study. P1 completed the testing in around 20
minutes which was expected.

P1 did not struggle with the survey, however, after some review with my supervisors,
we decided to change and improve it by rewording to make the questions more specific and
adding some questions that were missed.

The following are P1’s results from the survey:

Figure 5.1: P1’s results from survey

Figure 5.2: P1’s ranking of counterfactual explanation display options

5.1.4 Results

While completing the tasks there was some common behaviour, 3 out of the 4 participants
displayed confusion between the class and target options in the filtering section. Most were
able to identify the differences after re-reading the introduction but P2 could not see the
differences. Also, participants 2,3 and 4 did not input an instance before clicking the bar
chart and had to be told why the graph wasn’t being displayed. Even though it is stated in

22

the introduction, most participants did not remember or correctly read the text introduction,
even though the first task in the testing was to read the text introduction.

Figure 5.3: Results from survey

Figure 5.3 displays the results from the survey, for most of the questions the average
result was between 4-5, which shows that the website was successful. However, the respon-
siveness of the buttons is highlighted as an issue within the website (scale average = 2.23).
Participants (P2, P3, P4, P5) stated that this was because when they hit a button, nothing
presented that the button had been pressed. Also, buttons often lagged after being selected
due to the complexity of the algorithms and operations.

Most participants ranked intuitiveness (scale average = 4) highly, stating that it was easy
to navigate the UI and find features and information. They also understood all the variables
and changes that could be made. However, P3 ranked it at 3 stating that “the styling of it
made it harder to visually interpret.” Some participants also mentioned that their lack of do-
main knowledge about counterfactuals and water potability impacted their understanding
of the system and intuitiveness.

All participants were able to identify and understand what needed to be altered to
change the potability using the two tables and/or the textual explanation (scale average
= 4). P3 did scale this question as a 3, however, they stated that this was due to not hav-
ing a deep understanding of how these changes occurred and her lack of water potability
knowledge.

Participants found that the comprehensiveness of the filtering section provided very
good feature options (scale average = 4.25). A participant recommended that a filtering
option in the feature selections should contain an ‘All’ option, so they don’t have to re-select
all the individual boxes. However, most participants identified an issue within the feature
section, where when the data is reset, the filtering option does not change back to its orig-
inal state. Meaning that if you unselected the first feature from the data and then hit the
reset button, the data would reset but the first feature will remain unselected in the filtering
section.

In the qualitative survey questions survey, half of the participants (P4 and P5) stated that
the purpose of the website was introduced correctly and clearly, while the other half said it
was a bit confusing in places (P2 and P3). This was because of the lack of knowledge on
counterfactuals and water potability. P2 recommended changing the layout of the filtering
section by separating the features, classes and range index, as these options filter the data,

23

Figure 5.4: Ranking of group counterfactual explanation display options

Figure 5.5: Ranking of single counterfactual explanation display options

from the target option, as this option filters the algorithm. P2, P3 and P4 advised improving
the design by changing the font and text layout, changing the colours of buttons when they
are clicked and changing the colour pallet. P4 and P5 highlighted that they could see the
benefits of the website for ML researchers and that the idea contains a lot of merits.

Figures 5.4 and 5.5 show the results where participants were asked to rank the best dis-
play options for both displaying group and single counterfactual explanations. Both of these
graphs are very similar and highlight that the tables were the best counterfactual explana-
tion display as 75% of the time it ranked first and 25% of the time it ranked second for
both single and group explanations. The second best was the textual displays which ranked
second 50% of the time for group explanations and 75% for single explanations. Textual
explanation ranked first 25% for both single and group explanations, and 25% for third for
group explanations. Bar charts ranked third, ranking third 75% of the time for group ex-
planations and 100% of the time for single explanations. The heatmap ranked fourth 100%
of the time for group explanation and was not an option for single counterfactuals as the
heatmap will likely not provide any information for single counterfactual explanations.

5.1.5 Discussion

Difficulty in parsing and retaining the information in the upfront text-based instructions is
one possible reason for the confusion regarding the differences between classes and targets.
This is not surprising as most people skip these kinds of big paragraphs of text. Therefore a
better option for distinguishing between the target and class filtering options may be adding
an information icon beside both options to explain each option. This will mean less scrolling
as they will not need to go back to the top of the page to re-read the instructions, but users
are more likely to read this as it is more convenient.

To improve the responsiveness of the bottom, the button can change colours when they
have been clicked. This would be a very simple way to indicate that something has hap-
pened even if there is a lag in the system. We did have a look into improving this after
finishing evaluation but found it difficult to implement with the current libraries and tools

24

we are using. This could be something to look into in the future. Also, breaking up the
introduction and instructions at the top of the page into information icons could present
information when the mouse if being hovered over it, this would make information more
convenient. Popup dialogue could also indicate important information to grab the user’s
attention.

The textual explanation and the tables were shown as the best representations of the
counterfactuals for both single and group counterfactuals. These results were not surpris-
ing for the group of counterfactuals display as the bar chart can only display one instance
at a time (Figure 5.4). However, we expected the bar chart graph to rank high for display
options for a single counterfactual (Figure 5.5), P5 stated that they ranked the textual expla-
nation and tables high because they complemented each other well, and were easy to move
between the two display options. The heatmap was ranked poorly, P2, P4 and P5 were con-
fused with what this graph displayed and/or the correlations it had to counterfactuals. This
may be due to the features not containing high and different correlation values therefore not
fully representing the benefits of the heatmap.

5.2 Counterfactual Algorithm Testing

5.2.1 Aim

To evaluate the counterfactual algorithm different metrics and methods will be used to iden-
tify the effectiveness and accuracy of the system. We will use Euclidean distance and Man-
hattan distance alongside evaluating how many features are changed and how much the
features have been modified, to check the performance and fidelity of the algorithm.

5.2.2 Method

The first metric is the Manhattan distance, which is used to calculate the shortest path be-
tween two points. This is done through the sum of the absolute differences of data point p1
with co-ordinates at (x1, y1) and the nearest neighbor data point p2, with co-ordinates at (x2,
y2) [25].

Manhattan = |x1 − x2|+ |y1 − y2| (5.1)

Secondly, the Euclidean distance, which finds the distance of a segment that connects
two points using equation 5.2 [26]. The two points used, are the same as the Manhattan
distances

Euclidean =
√
(x2 − x1)2 + (y2 − y1)2 (5.2)

Both the Manhattan and Euclidean distances are very similar equations. The main dif-
ference is that Manhattan distance is only permitted to move in straight lines, either vertical
or horizontal lines. Whereas, Euclidean distance can move in diagonal lines. These matrices
will be able to calculate the difference between the counterfactual explanation data and its
original data point values based on the counterfactual output. This will identify how similar
or different the two points are and the results can highlight issues with the algorithm. These
issues can be identified through large distance values, as this can mean that there have been
large changes within the feature values and/or many features have been changed. While
this is not always an issue it can mean that the counterfactual algorithm may not be reduc-
ing the explanation correctly, as the feature selection step (Section 4.3) in the algorithm aims

25

Test ID Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10
Test 1 5.014 2.391 0.7433 4.319 5.009 2.046 0.3842 0.8282 10.28 1.874
Test 2 27.71 18.7 2.674 5.664 11.42 2.33 0.8078 1.832 11.85 2.255
Test 3 8.213 16.81 0.401 2.726 5.253 1.835 0.6465 1.813 4.954 5.71
Test 4 6.648 13.04 2.133 1.108 15.6 2.137 0.942 3.518 7.452 14.97
Test 5 12.65 3.231 0.97 4.211 3.7 1.045 0.1884 2.79 1.48 4.9
Average 12.047 10.8344 1.38426 3.6056 8.1964 1.8786 0.59378 2.15624 7.2032 5.9418

Table 5.2: Euclidean distance per feature

Test ID Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9 Index 10
Test 1 9.215 4.924 0.933 4.319 8.719 2.763 0.656 1.12 13.45 2.767
Test 2 30.4 23.38 4.474 5.664 14.31 4.372 1.112 4.061 16.28 3.29
Test 3 10.38 22.7 0.519 3.726 12.12 3.102 0.647 2.179 7.775 5.71
Test 4 12.15 15.35 2.133 1.816 18.47 3.486 1.308 4.31 15.15 19.49
Test 5 15.57 5.025 0.97 4.211 4.435 1.684 0.256 2.79 2.492 4.9
Average 15.543 14.2758 1.8058 3.9472 11.6108 3.0814 0.7958 2.892 11.0294 7.2314

Table 5.3: Manhattan distance per feature

to reduce the changes. Another issue can also be identified through a fluctuation of the dis-
tances when repeating the counterfactual algorithm when using the same data point. This
can show inconsistencies within the algorithm.

Lastly, by reviewing the number of features changed and how they were modified, we
will be able to identify any unusual changes made to the features. Another way to achieve
this is to apply the modified feature values to the model to check if the changes affected the
outcome of the instance.

5.2.3 Results

Each table contains the values for either the Euclidean or Manhattan distance. We have
tested the algorithm five times using the same ten instances/indexes, details on the ten
instances are displayed in Appendix D. This is to check the consistency of the algorithm and
identify any big changes that are being made. The small distance values identify that not
a lot of changes have been made to the counterfactual, while bigger distance values show
that there have been more changes i.e. a feature may have been increased/decreased by a
large amount. Each distance has been divided by the number of features that were changed
as some counterfactual explanations may have only one feature change while others have
four.

Figure 5.6 displays the results from the Euclidean distance table above, where the bars
indicate each index’s test results and the green line shows the averages for each index. We
have used a green line for the averages to easily compare the pattern the results are show-
ing. Through this graph, we can see that there is fluctuation in some of the counterfactual
explanations such as index 1, 2, 5, 9, 10. These same indexes showed the highest distance
averages. The Manhattan distances display nearly identical patterns, with the same fluctua-
tions. However, the results and averages are higher likely due to the equation using absolute
values.

Figure 5.8 displays how many features were changed in each counterfactual explanation.
These results are important to look at when reviewing this counterfactual algorithm as a
part of the algorithm is to reduce the number of features changed. Therefore, we want the

26

Figure 5.6: Euclidean distance

Figure 5.7: Manhattan distance averages

number of feature changes to be low. In the graph, the bars indicate each index’s results
and the green line shows the averages of all the tests for each index. From this we can see
indexes like 1, 3, 4, 7 and 10 have pretty consistent feature changes as they either switch
between two values and/or all values are close together. However, indexes like 5, 6, 7, 8 and
9 fluctuate.

5.2.4 Discussion

The results from the counterfactual algorithm testing (5.2.2) displayed some successful out-
comes. This is evident through the averages displayed in both the distance and number of
features changed graphs. When the tests were run, the target class was set to 1. This means
that instances that had a class of 0, should have more changes that would need to be made.
This can be seen in the results, for instance, a ’Potable’ class of 0 has a mostly higher average
for both distance and number of features changed.

Comparing the graphs, Figures 5.6, 5.7 and 5.8, we can see that there is a high correlation

27

Figure 5.8: Number of feature changes

Figure 5.9: Heatmap from the website

between the distance averages and how many features were changed. Highlighting that
the more features that need to be changed in an instance, the greater the distance between
the counterfactual explanation and the original distance. This is not surprising and was
expected.

However, the evaluation did highlight some inconsistencies with the algorithm. Half of
the indexes display fluctuation in Figures 5.6 and 5.8. In Figure 5.6, index 1 has the greatest
distance difference within an instance with its lowest value of 5.014 and its highest value of
27.71, these values have a difference of 22.696.

Another interesting observation found in testing was that the feature ’Chloramines’ was
always changed in the counterfactual explanation. No investigation has been done into this
so it is unclear if this change is always necessary or if there is an issue within the code.

An interesting finding found using the heatmap on the website Figure 4.4, was the lack of
correlation between the features. The highest correlation identified, by looking at the shade
and the scale value provided by hovering over the square is the diagonal line that has a scale
of 1. However, we should ignore this line as it is just comparing the feature against itself,
therefore, is redundant and irrelevant information. Excluding the diagonal line, the highest
correlation is between ph and hardness with a value of 0.128. The lowest relationship is
between hardness and sulphate. This relationship can be seen in the counterfactual in figure
5.9, because with index 5, ph and hardness have been changed together, however in index 6
when sulfate is altered hardness remains the same.

28

Chapter 6

Conclusion

6.1 Summary of Key Takeaways

We successfully designed a tool that has fulfilled all requirements (Table 3.1) and imple-
mented a website, based on our design, that fulfilled most of the requirements (Table 4.1)
The tools is able to provide visualising and exploring counterfactuals available to people.

The most important aspects that were considered when designing this tool were data
filtering and manipulation and the display of the counterfactuals. Many design choices
were made around what techniques should be used for the data visualisation as this was
one of the most important and difficult parts of displaying the counterfactual explanations.
Many ideas for graphs and techniques were thought/researched, however, we narrowed it
down to a combination of tables, bar charts and a heatmap. Through the evaluation, we
can see that this was able to provide good explanations, however, the decision to use these
graphs partially centred around data collection and the scope of the project.

We were able to implement most of the requirements within the proof-of-concept proto-
type, including filtering/manipulation of the data (R2), the different counterfactual displays
(R1, R3, R4) and partially R6 for accessibility. However, we were unable to implement the
import function. The implementation of this function could have been easy to implement
if we did not start this project by focusing on one dataset and implemented this function
earlier on. Focusing on only one dataset, meant that some areas were unintentionally hard
code. Even though we spent some time changing this, so that the code was not fixed to one
dataset, we ran out of time to implement this function.

The usability testing did highlight an issue with unappealing aesthetics such as bad
choices in background colour and style. This was due to the scope of the project. When
designing the tool not a lot of focus was put on the colour palette and text (font and size)
as they were not considered important aspects at the time. However, this ended up tak-
ing away from the UI and usability of the website. This could have been improved upon
by focusing on providing good aesthetics in the design stages, rather than just looking into
the layout and functionalities of the tool. By improving the balance of the design stage, it
would have been quicker to implement better UI and usability through these improved aes-
thetics. These issues could have also been identified and improved upon if usability testing
was done easier, even though the prototype would not have been completed, we could have
provided a mock-up of the prototype through Figma to get feedback on the style, colour and
UI.

The results of the counterfactual algorithm evaluation showed fluctuations in the dis-
tance matrix. However, overall the evaluation showed the algorithm worked correctly.

Next time, something that should have been taken into big consideration is the scope
of the project. However, overall the project showed positive and successful outcomes. The

29

prototype presented how a counterfactual algorithm can be used to interpret data and alter
the outcomes of an individual data point and how graphs can be used to display and analyse
these counterfactual explanations.

6.2 Future Work

Through the evaluation of the tool, issues and ideas were highlighted that could be com-
pleted in the future.

The current design of the data visualisation provides an effective analysis of single coun-
terfactual explanations but the usability testing showed a lack of proper tools for exploring
groups of counterfactuals. The heatmap was supposed to be able to provide more informa-
tion to explain the explanations, however, it ranked the lowest. There were other graphs that
could provide better and more interesting visualisations for exploring groups of counterfac-
tual explanations but we would have struggled to complete a prototype of the tool with the
scope (Section 3.3.1). In the future, more research could be done into graphing groups of
counterfactuals.

Other recommendations that could improve the tool include: improving the aesthetics
of the design (layout, style, colour etc), this could include, adding information icons beside
each filter option, brightening up the colour palette, and changing text font to make the
text more readable; implementing the import function (R5) to improve the accessibility (R6)
and usefulness of the system; creating a more stable and robust counterfactual algorithm to
improve the counterfactuals performance.

In the CFE website, it uses a fixed black-box model (random forest), however, coun-
terfactuals are model-agnostic (Section 2.3.1), which allows the algorithm to work on any
black-box model. In the future, we could implement a function that allows users to select
different black-box models as this would allow for better analysis of the data and counter-
factual algorithm. Also later extending the website to offer more counterfactual algorithms,
to allow for analysis between the different algorithms.

The evaluation did present an issue around the responsiveness of the buttons in the sys-
tem. This is greatly due to the tools and libraries used to implement this system. While
python was a good language to use for ML and XML algorithms and methods. It did not
provide the best libraries and tools for implementing a web application as the Plotly dash
library did not contain an easy way to implement UI feature such as the button responsive-
ness. Therefore, an analysis of the tools used in the project would be an interesting and
enlightening task to complete in the future.

6.3 Key Achievements

We have implemented a proof-of-concept prototype that uses counterfactuals to explain
why a Machine Learning system reached a particular decision The system uses informa-
tion visualisation techniques and targets users without a deep understanding of machine
learning

We evaluated my prototype using two different techniques: usability testing to find
strengths and weaknesses in the user interface from the perspective of the target users; dis-
tance matrices to ensure the core counterfactual algorithm was correct. The evaluations
demonstrated users could successfully explore appropriate counterfactuals and highlighted
some areas of the user interface that can be improved in subsequent versions of the system

30

Bibliography

[1] S. Sharma, J. Henderson, and J. Ghosh, “Certifai: Counterfactual explanations for ro-
bustness, transparency, interpretability, and fairness of artificial intelligence models,”
2019.

[2] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J.Zhu, Explainable AI: A Brief Survey on
History, Research Areas, Approaches and Challenges. Springer and Cham, 2019.

[3] C. Molnar, Interpretable Machine Learning. 2 ed., 2022.

[4] L. Gilpin, D. Bau, B. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining explana-
tions: An overview of interpretability of machine learning,” 2019.

[5] “Decision trees,”

[6] J. Wong, “Decision trees,” 2021.

[7] Y. Dong, H. Su, J. Zhu, and B. Zhang, “Improving interpretability of deep neural
networks with semantic information,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 975–983, 2017.

[8] D. Zheng, W. Zhang, S. N. Alemu, P. Wang, G. T. Bitew, D. Wei, and J. Yue, Short-term
renewable generation and load forecasting in microgrids, ch. 4.4.3.4. Science Direct, 2021.

[9] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki, “Inverse classification
for comparison-based interpretability in machine learning,” 2017.

[10] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, “Greedy algorithms,” 2020.

[11] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers through
diverse counterfactual explanations,” 2019.

[12] A.-H. Karimi, G. Barthe, B. Balle, and I. Valera, “Model-agnostic counterfactual expla-
nations for consequential decisions,” 2020.

[13] J. Heer, M. Bostock, and V. Ogievetsky, “A tour through the visualization zoo,” acm
queue, vol. 8, no. 5, 2010.

[14] M. S. T. Carpendale, “Considering visual variables as a basis for information visualisa-
tion,” University of Calcary, 2003.

[15] B. Shneiderman, “The eyes have it: A task by data type taxonomy for information vi-
sualizations,” Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343, 1996.

[16] R. M. Byrne, “Counterfactuals in explainable artificial intelligence (xai): Evidence
from human reasoning,” International Joint Conference on Artificial Intelligence (IJCAI-19),
pp. 6276–6282, 1970.

[17] “Use cases,” GitLab.

[18] B. Shneiderman, “The eyes have it: a task by data type taxonomy for information visu-
alizations,” Proceedings 1996 IEEE Symposium on Visual Languages, p. 336–, 1996.

31

[19] E. S. Chukwuemeka, “Best programming languages for artificial intelligence 2022: Top
10,” 2021.

[20] A. Smith, “Python vs java — which is more compatible for web development?,”
medium.

[21] T. Laugel, “Growing spheres,” 2022.

[22] A. Kadiwa, “Water potability,” 2021.

[23] Gulf of Evaluation and Gulf of Execution. The Glossary of Human Computer Interaction.

[24] J. Nielsen, Usability Engineering, ch. 6. Elsevier Science & Technology, 1994.

[25] G. R. Sahani, “Euclidean and manhattan distance metrics in machine learning.,”
Medium, 2020.

[26] “Euclidean distance formula,” CueMath.

32

