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Abstract 

 
Datapoints that deviate strongly from the common trends in the dataset, also known as 

outliers or anomalies, can appear in many real-world applications through measurement 

errors and unforeseen circumstances. Coming up with methods to detect them 

autonomously is a challenging yet promising research area. In this paper we investigate a 

range of both supervised and unsupervised outlier detection techniques using machine 

learning. Focusing on unsupervised and evolutionary algorithms, we propose our own GA 

based algorithm inspired by methods used in previous papers, with a focus on optimising 

the slow runtime. We are successful in shrinking the runtime to less than half on a larger 

dataset, but also leave plenty of discussion and room for future improvement. 
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 1. Introduction 
 

 1.1. Problem Statement 

A common problem faced in machine learning and data interpretation is the presence of outliers: data 

points that deviate largely from the common trends in the dataset. Also referred to as anomalies, outliers 

can occur in datasets through measurement errors or unforeseen circumstances and can cause drastic 

changes in statistical analysis and machine learning results. Therefore, being able to detect these outliers 

automatically through outlier or anomaly detection is a valuable research area. There are also many 

applications that extend from cleaning up a dataset, for example detecting malicious network 

connections or unexpected behaviour in network systems [1]. Other suspicious activities such as 

impersonation, unusual surveillance behaviour, and even patients with abnormal symptoms in a medical 

setting could all be detected as outliers [2]. 

 

 1.2. Motivations 

Particularly for large and high-dimensional datasets, machine learning for outlier detection is a 

promising technique that can be used to find datapoints that don’t belong to any one class, or a class that 

has too few datapoints to be viable. These definitions split outliers into two types, global outliers which 

deviate from all other points in the dataset, and local outliers which are far from their closest (either just 

inliers or both) neighbours. There are two main approaches to outlier detection in machine learning, 

through supervised learning or unsupervised learning. 

 

In supervised learning, a model is trained on previously experienced labelled data, and therefore 

information and domain knowledge about the outliers needs to be known beforehand. This makes it 

unfeasible for detecting new types of anomalies in fraud detection and other related applications.  

 

Therefore, unsupervised outlier detection is an interesting research area as it can be effective at detecting 

outliers without needing pre-labelled data, something that can be hard to find in real world practices [2]. 

Instead, outliers are identified by looking at similarities between points in the data, either through 

clustering-based detection or proximity-based. In both cases, these algorithms require specifying 

variables such as cluster size or neighbourhood distance. There is no universal best fit algorithm for 

these unsupervised methods, and they are therefore extremely sensitive to parameter tuning. Research 

has shown that a poor parameter setting can lead to inferior outlier detection [2], and therefore additional 

attention on these parameters becomes its own separate optimisation problem. 

 

Some recent works have taken a different approach and looked at using evolutionary computation to 

evolve an outlier detection model. These machine learning algorithms can learn some representations 

and parameters themselves without needing to specify beforehand. Evolutionary algorithms such as 

Genetic Programming can even have the potential to return an interpretable symbolic-based structure to 

give insight as to why the computer is making certain decisions around the outlier detection. One of the 

more commonly used evolutionary techniques called Genetic Algorithm (GA) shows potential for 

outlier detection for its simplicity and ability to be adaptable to many situations. There have been 

previous attempts at using GA for outlier detection [5, 8, 9], however these investigations were 

performed across reasonably small datasets, the largest being at 7000 instances with just 4 dimensions 

[5]. In real world problems, datasets are usually significantly larger in size and dimensionality and 

therefore it is important that an outlier detection method is scalable and optimised. 
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 1.3. Research Goals 

 

Outliers are usually defined as data that deviates strongly from all other points (including other outliers), 

however we decided to investigate an outlier detection method that only looked at deviation from inliers. 

In some cases of anomaly detection, it might be possible that the anomalies themselves are not too 

different from each other, made of a smaller sized class potentially even clustered together. The key 

difference with our proposed algorithm when compared to previous methods discussed in the paper, is 

that our distance function for each outlier only looks at its closest non-outliers, ignoring proximity with 

other outliers. 

 

In this project we first investigate a range of outlier detection techniques and propose our own 

unsupervised GA based algorithm inspired by methods used in previous papers, focusing on optimising 

the training runtime for use on larger sized datasets. The goal is to investigate this different proximity 

evaluation, and attempt to maintain high precision and recall as much as possible whilst optimising the 

computation required. We first experiment and perform tests on an initial algorithm, mostly inspired by 

a previous method but with modified fitness evaluation, and then attempt to optimise the GA further for 

a second version. 
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 2. Background Concepts 
 

 2.1. Evolutionary Computation 

Evolutionary Computation (EC) is a subfield of Artificial Intelligence inspired by real world biological 

processes. Evolutionary algorithms such as Genetic Algorithm (GA) or Genetic Programming (GP) 

evolve a group of individuals over a series of generations through minor mutations and genetic cross-

over, selecting the best through a fitness measure, emulating natural selection (Figure 1). These 

mutations and the genes which are crossed over are usually chosen by random chance, resulting in a 

diverse range of possible individuals able to be generated and explored, whilst maintaining elitism by 

saving the best performers over each generation. Over time the population of individuals will evolve to 

optimise the desired result, which is evaluated through the fitness function, as the individuals are ranked 

and selected for the next generation based on this score. This can either be done deterministically or 

stochastically: either only the best performing individuals are selected, or any individual can be picked 

at random with better fitness meaning a higher chance to be chosen. 

 
 

 2.2. Genetic Algorithm 

In the GA, individuals are represented by a series of 1s and 0s called a chromosome, with each 1 or 0 

being a gene. This format makes this algorithm useful for problems where the goal is to find the optimal 

selection from a group of features or variables, with a 1 representing a feature being included and a 0 

being excluded. The initial population consists of a group of randomly generated individuals, which are 

then ranked by taking the genes from each chromosome and applying the fitness function on that 

selection of the input data. After ranking, the best individuals are selected, and these are assigned as the 

parents for the next generation. A gene cross-over algorithm is applied which involves taking two 

parents, and randomly selecting half of the genes from one and the other half from the other to create a 

new individual, called the offspring. This maintains the positions and values of the genes in the already 

proven well performing parents, only generating different combinations of already existing 

chromosomes. A mutation step is also applied to either these new offspring or to other existing parents 

in the population. This would involve flipping one or more chosen genes in the individual, either 

changing a 0 to a 1 or a 1 to a 0. This could be done randomly or with a local search to optimise the 

mutation, such as in a memetic algorithm. The individuals generated through the gene cross-over and 

mutation stages are often combined with the selected parents for the next generation to maintain elitism. 

Elitism means the current best individuals are never lost in each generation and kept through to the end 

of the training. To maintain the same number of individuals in every generation, the number of 

individuals generated through cross-over and mutation should equal the population size minus the 

number of parents generated. 

Figure 1: Evolutionary Algorithm Flowchart 
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 2.3. Genetic Programming 

GP follows a similar process to GA; however, the individual representation is very different. In GP 

every individual is a program complete with functions and terminals, usually represented by a tree 

diagram. Individuals are randomly generated by picking from a set of pre-defined functions (i.e. 

addition, subtraction, multiplication, division), and terminals (i.e. set numbers or variables), to create an 

arbitrary function that can then be modified to evolve over time. Fitness evaluation can be done when a 

set of training data is passed through each individual’s program and the output is compared with its 

known desired values through a similarity metric such as mean square error. The programs which have 

the closest overall predicted outputs to the desired outputs will have the lowest mean square error, and 

therefore have the lowest fitness value, which makes this type of problem a fitness minimisation 

problem. Crossover in GP usually involves taking subtrees of one individual’s program tree structure 

and either switching it or overwriting a subtree in another individual’s program. Mutation can have 

many forms, either simple functions or terminal nodes (such as numbers or variables) can be randomly 

switched with another compatible node of a different type, or nodes could even be added or removed 

from the program entirely. The rest of the process is much the same as GA, however the more complex 

and customisable individual representation in GP makes it suitable for a larger range of different 

applications. 

 

 2.4. Mean Square Error 

A common metric used in machine learning for evaluating the difference between two sets of continuous 

data is Mean Square Error (MSE). It can be useful as a fitness function in supervised learning when the 

results passed through a learned algorithm can then be compared with its corresponding test data. In 

MSE the difference between each pair of points in the data is calculated and squared, these are then 

summed up and divided by the total number of points (Equation 1). 

 

 

MSE =  
1

𝑛
∑(𝑌𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

 
where 𝑌 is the true observed value, �̂� is the corresponding predicted value, and 𝑛 is the number of 

samples in the dataset. 

 

 

 2.5. Precision and Recall 

 

Precision and recall are two evaluation metrics useful for classification problems especially when there 

is an imbalance in size between the classes, as overall accuracy would be biased towards the larger class.  

 

Precision is a measure of how accurate the predictions of one class are, which in this case would be the 

accuracy of the returned outliers. It is calculated as the number of relevant individuals in the returned 

instances, divided by the total number of returned instances. It can also be seen as a sort of measure of 

the quality of the predicted outlier data. 

 

On the other hand, Recall is a measure of how many of the correct class instances were returned as 

predictions. It is calculated as the number of relevant individuals in the returned instances, divided by 

Equation 2: Mean Square Error Formula 
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the total number of relevant instances. In this case it can be seen as more of a measure of the quantity 

of the predicted outlier data. 

 

 2.6. Multi-objective Optimisation 

Traditionally when using evolutionary algorithms there is a single objective or fitness function that needs 

to be optimised. However, sometimes a problem might involve needing to optimise two or more 

conflicting objectives, for example minimising house price whilst maximising property size. This cannot 

be evaluated with a single fitness value and therefore requires a special fitness ranking system. Because 

there is no single best solution that exists, a common technique is to find the best set of individuals that 

fall closest to the optimal Pareto front. The Pareto front is a curve in multi-dimensional space which 

contains all individuals which cannot be dominated by any other individual in the population, i.e. can’t 

be beaten on any one objective without being worse on another objective. The goal is to find a non-

dominated curve with a variety of individuals evenly spaced across the curve to return a diverse range 

of quality solutions across the different objectives. This also gives the user freedom to choose the 

solution they’d prefer depending on which objective(s) they deem most important. 

 

 2.7. NSGA-II 

One commonly used fitness ranking system for multi-objective optimisation is the Nondominated 

Sorting Genetic Algorithm II [3] (NSGA-II). The previous naïve approaches for MOO involved 

comparing every individual with every other individual to find which were nondominated for every 

rank, and this had an overall worst-case complexity of O(MN3) where N is the population size and M is 

the number of objectives. The NSGA-II is a faster algorithm with a complexity of only O(MN2), as for 

each individual a domination count np (number of solutions that dominate it), and a dominate set Sp 

(solutions it dominates) are calculated. The entire population can then be ranked by first going through 

each set Sp of the nondominated individuals with np = 0 and reducing its domination count by 1, any 

individuals that then have a np = 0 after this step can be ranked under the second curve, with this process 

repeating for the remaining ranks. Despite being faster, NSGA-II does have a higher storage requirement 

over the naïve approach as there are now O(N2) values instead of O(N) before to store, but the saving in 

speed is worth the trade-off.  Individuals can then be sorted within each rank by their crowding distance 

with their neighbours, to maintain diversity and encourage a uniform distribution across the curve. The 

crowding distance is calculated by taking the absolute distance between the two neighbours either side, 

and giving the two individuals at each end of the curve an infinite distance. Therefore, all individuals in 

a population can be ranked for selection in an evolutionary algorithm by first going through each Pareto 

curve rank from 1 and up, until a rank is reached that contains more individuals than remaining slots for 

the selection. The individuals in this rank are then sorted by crowding distance and added to the selection 

from highest to lowest. 
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 3. Literature Review 
 

 3.1. Using GP For an Ensemble of Outlier Detection Algorithms 

There are many different types of outlier detection algorithms, some are designed for detecting local 

outliers (i.e. Local Outlier Factor (LOF), Local Outlier Probability (LoOP)), while others are useful for 

obtaining global outliers (Support Vector Machine (SVM), X-means). In some outlier detection 

problems, it is not always clear whether a global or local outlier detection system should be used, and 

combining the two isn’t always straightforward. 

 

In 2019, Folino [4] proposed an ensemble outlier detection method that utilised GP to combine various 

algorithms with different parameters to detect new network attacks. A GP function set consisted of the 

standard Avg, Max, Product and Square functions, as well as a selection of both local and global outlier 

detection algorithms, with and without Principal Component Analysis (PCA) dimensionality reduction 

and a variety of parameter settings. The investigation was done using a supervised approach with 

predetermined validation data, so the fitness function was simply the classification accuracy. The dataset 

that was performed on was the well-known NSL-KDD dataset, which contained 6 different attacks 

(ipsweep, nmap, portsweep, satan, r2l, and u2r) as output anomaly classes. 

 

Through the investigation it was found that global outlier techniques performed well on some attacks 

(notably the ip-sweep, nmap and satan), and local outlier techniques performed better on others (satan, 

r2l, u2r). An ensemble was then built to combine both the local outlier and global outlier algorithms to 

find a function that could perform well on both, and the results showed that for most attacks there was 

a considerable increase in accuracy when only 5% of the data was used as validation, with the remaining 

2 attacks improving at 20% validation data. The results showed good accuracy, performing around 70-

80%, and made use of Genetic Programming to find an optimal aggregation of outlier detection 

techniques. However, the main challenge with their method is it relies strongly on quality validation 

data that is necessary to train the GP model. In real world applications this validation data may not be 

easily accessible, which is one of the advantages of an unsupervised approach. 

 

 3.2. One Class Classification with KDE and GP 

In the field of network security, the access to quality data poses a great challenge for supervised learning. 

As the widespread use of computer networks continues to increase, new types of anomalies are evolving 

making existing data potentially redundant for capturing new attacks. Additionally, information about 

existing anomalies might be difficult to obtain due to security and privacy reasons, and there would be 

a very small sample size of these intrusive events. Therefore, as only the normal network behaviour data 

is usually available, an unsupervised technique called “one class classification” has been used by Cao, 

Nicolau, and McDermott [1] in 2016 where they proposed a new method for network anomaly detection.  

 

Kernel Density Estimation (KDE) is a way of modelling the density of a given dataset and can be used 

for outlier detection by assigning a density threshold, classifying data between outlier and inlier 

depending on whether its density meets the value. However, the computational cost at query time can 

be high, as it scales with the number of data points [1]. KDE stores all the training data before computing 

the density of a new datapoint, increasing the cost as the training data gets larger. Therefore, the 

proposed method is to model a density estimation through GP, as this query computational cost would 

only be as large as the number of tree nodes. This comes with a second advantage, returning a potentially 

interpretable expression for classifying data. 
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First the KDE is used to estimate the density of the training data, however an issue with this is that 

regions outside of the training data won’t be able to have their density predicted. Therefore, some 

artificial data is generated by sampling the low-density regions from a gaussian distribution with same 

mean and standard deviation as the training data. This is combined with the training data for evaluating 

the fitness function of the GP, which is the root mean square error between the KDE density and the GP 

predicted density (figure below). RMSE is the same as MSE except for an additional square root applied 

on the result (Equation 2). 

 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  √
(∑ (𝑓(𝑥𝑖) − 𝑑(𝑥𝑖))2

𝑖=1
𝑚+𝑝 )

(𝑚 + 𝑝)
 

 
where m is the number of samples in the training set and p is the number of samples in the artificially 

generated set. f is the GP algorithm and d is the KDE density. 

 

 

Five datasets were used in their experiments, and each was randomly sampled at a 50/50 split between 

training and test data. As this was a one-class classification investigation, datasets with only one 

dominant target class with a small number of non-target classes were used, and all non-target instances 

were used in the testing set only. Experiments were conducted on the proposed One-Class Genetic 

Programming (OCGP), as well as on One-Class Kernel Density Estimation (OCKDE) and One-Class 

Support Vector Machine (OCSVM) for comparison. Results were measured using the Area Under Curve 

(AUC) metric, which is a summary of how well the model can distinguish between the positive and 

negative class across multiple density threshold values. Some computational cost measurements were 

also taken. For the OCGP, the number of nodes in the tree, for the OCSVM, the number of support 

vectors, and for the OCKDE, the number of training points. 

 

It was found that the AUC performance across the five datasets and all three models were very similar, 

with the OCGP often even performing higher accuracy than the OCSVM. The number of training points 

and support vectors, however, scaled largely with the size of the dataset, whereas for the OCGP the 

number of nodes in the tree would stay consistent at around 200. This suggests that the OCGP is the 

most computationally efficient at query time, particularly for large datasets, whilst maintaining a similar 

accuracy to other methods. The training time, however, for the OCGP model is much slower than the 

other two methods, taking around 10 min compared to only a few seconds for OCKDE and OCSVM, 

but it has solved the main disadvantage of KDE, which is its slow query time, making it the most suitable 

for big datasets in real world applications. 

 

 3.3. Outlier Detection with Genetic K-Means 

The previous article was an example of a statistical method for unsupervised outlier detection, in which 

a prior knowledge of the distribution of the dataset is used, however there are two other methods [5]. In 

deviation-based or spatial outlier detection, outliers are identified as the objects which cause the most 

change when excluded from a dissimilarity function (for example the variance across the dataset). The 

third and most widely used method is distance-based outlier detection, where outliers are identified 

through calculating the distance to their nearest neighbours. This method is so popular because it can be 

used on any feature space where a distance measure can be defined [5] and doesn’t require any prior 

statistical distribution. However, its main disadvantage is the large computational cost involved when 

calculating nearest distances, which scales enormously with large datasets. 

 

Equation 2: RMSE Fitness Function 
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Many researchers have proposed techniques to deal with this issue, one unsupervised outlier detection 

technique is to make use of clustering, a type of algorithm that is designed to group clumps of similar 

data together called clusters. These clustering algorithms can also be used to find datapoints that don’t 

fit in to any one group, labelling them as outliers. To avoid the computationally expensive distance 

calculation, a GA can be combined with K-Means clustering in an algorithm called Improved Genetic 

K-Means (IGK), which was used by Marghny and Taloba [6] in their proposed outlier detection. In IGK 

[7], the individual representation is a string of integers with length number of points in the dataset, with 

each integer representing the cluster each point is assigned to. The initial population is generated 

randomly using integers up to a specified K, and the fitness function is calculated as the sum of the 

distances from each point to its cluster’s centroid (Equation 3), with the goal being to minimise it. 

 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  ∑ ∑ |𝑋𝑖 − 𝑍𝑗|
2

𝑋𝑖∈𝐶𝑗

�́�

𝑗=1
 

 
where k represents the number of clusters, 𝐶𝑗 represents the jth cluster and 𝑍𝑗 represents the centroid. 

 

 

Mutations is done probabilistically where the closer a point is to a new centroid the more likely for it to 

change to that cluster. An additional step is used to enhance the IGK where the two cluster centroids 

that are closest to each other merge into the same cluster, and the process is repeated until only k clusters 

remain. The outlier detection step is then applied to the resulting clusters, datapoints are ranked based 

on an Outlyingness Factor [6], which is dependent on the distance to its cluster centroid. These 

outlyingness factors are normalised between 0 and 1, and then a threshold can be assigned to classify 

outliers that have an outlyingness higher than the threshold. This threshold value used in the paper was 

set at 0.9, and the algorithm was run on three different synthetic datasets. Because of the way the datasets 

were generated the original centroids are known, and so to evaluate performance the mean square error 

was taken between the predicted centroids and the actual. These were compared to a standard K-means 

clustering algorithm and an Outlier Removal Clustering (which is like the proposed method except uses 

K-means instead of IGK). 

 

There was a clear improvement with the proposed method, which consistently had a much lower mean 

square error on the cluster centroids. The datasets generated for the experiment were made up of 

normally distributed round clusters, and so the MSE measure is a fair judgement of the cluster and 

therefore outliers’ quality, however this is only feasible because of the specific shape of the dataset. 

Some datasets might have complex shapes with clusters that K-means isn’t able to detect well enough, 

where this method and this evaluation would be unsuitable. The bonus that comes with an outlier 

detection method like this is the rest of the data is classified into clusters, which might be useful 

depending on the problem. However, the quality of the outliers will lie entirely on the quality of the 

clusters found by the clustering algorithm. 

 

 3.4. Density-based Evolutionary Outlier Detection 

Another technique to avoid the computationally expensive closest neighbour calculation is proposed by 

Banerjee [5] who declared an approach that used a density-based distance measure combined with 

evolutionary search algorithm. In this method, outliers are detected through a weighted distance measure 

that combines simple Euclidean distance with a density component. This component is related to how 

frequently the feature, or in the case of continuous data, bin occurs in the dataset. 

 

Equation 3: IGK Fitness Function 
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The individual representation in the evolutionary algorithm is a string of integers the same length as the 

number of points in the dataset. Each integer represents the predicted closest neighbour based on this 

modified distance metric, so for example in a dataset of five samples, an individual [43513] would mean 

point 4 is the closest to point 1, point 3 is the closest to point 2 etc. During genetic crossover, distances 

are compared iteratively through both parents to select only the shortest from each one rather than 

random chance. Mutations are still performed randomly from a predetermined probability; however, a 

second mandatory mutation correction is also applied to ensure no genes refer to themselves as their 

own nearest point. In some experiments this random mutation step was disabled after a set number of 

generations to encourage exploitability. The fitness function was calculated inversely to the sum of the 

nearest distances, making this a minimisation problem with a fitness less than 1 near optimal. Outliers 

can then be selected from the final representation by taking the k points with the largest distances that 

occur in the final individual. 

 

A first series of experiments was conducted on a set of five baseline datasets for parameter tuning, and 

results were compared to a Least-Squares genetic algorithm outlier detection technique [8]. A technique 

for population initialisation that involved using k-means clustering and assigning genes to others within 

the same cluster was tested and resulted in convergence being achieved up to two times as fast. The 

second set of experiments involved validating the parameters across two gaussian generated datasets of 

size 1600 (and dimensions 2 and 12). Finally, two real world datasets (yeast dataset of size 1484 and 

dimensionality 6, highway dataset of size 7089 with 4 dimensions) were tested. In both datasets, 

datapoints that were either unrepresentative or errors were able to be detected for low values of k, and 

the results were encouraging. 

 

The computational issue with having to iterate through all datapoints to calculate the nearest neighbours 

in a large dataset has been significantly reduced with this method. The additional density weight also 

helps outliers in sparse regions be detected faster. However, as the individual representation is the length 

of the entire dataset, this still makes this method a challenge for very large datasets. A more variable 

chromosome design that only stores information for outlier distances and can change length during the 

algorithm could be more efficient in these cases. There is also still the challenge of choosing the best 

value for k, which in future work could be automatically identified through some other fitness measure. 

 

 3.5. Outlier Detection with Multi-objective GA 

A similar genetic algorithm approach to unsupervised distance-based outlier detection was proposed by 

Duraj and Chomatek in 2017 [9]. Individuals were again represented as a string of integers of same 

length as the size of the dataset, however instead of storing the nearest point in each gene, simply a 1 or 

0 was used to determine whether a point should be classified as outlier or not. 

 

This algorithm made use of multi-objective optimisation, instead of having a single fitness function to 

optimise there were five different objectives. Firstly, the average distance from the k nearest neighbours 

of the outliers was aimed to be maximised, and there were three functions here for k values 1, 2, and 3. 

This had the goal of keeping outliers as far from other points in the data as possible. The fourth objective 

was to maximise the average distance of all the outliers from the centroid of the outliers, with the goal 

to keep outliers as far from each other as possible. The final objective was to minimise the number of 

outliers, as datasets generally have far fewer outliers than inliers. 

 

The crossover was simply done by selecting a random point along the chromosome and switching half 

with another parent, and mutation was a small random chance to flip a gene from 1 to 0 or 0 to 1 on 

every datapoint. Because there were five objectives, a special GA fitness evaluation system needed to 

be used for ranking individuals. Three different genetic algorithms were tested in the paper; PESA-2, 

SPEA-2, and NSGA-II. 
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Two experiments were conducted using the first 100 observations of the Wisconsin Breast Cancer 

dataset from the UCI Machine Learning Repository, of which 18 were malignant cases and used as 

outliers. In the first experiment only the first 4 attributes were used, but in the second all 10 were used. 

Four metrics were used for evaluating the performance of the algorithm; percent of true outliers returned, 

accuracy of predicted outliers, percent of inliers identified as outliers, and the accuracy of incorrectly 

predicted outliers. Through these results it was concluded that NSGA-II performed the best in terms of 

identifying the most outliers, however it also misidentified the most too. Both PESA-2 and SPEA-2 

identified less but were also the most accurate in their predictions. All algorithms performed better on 

the lower feature space, which is likely due to there being a smaller search area. One main disadvantage 

to this method is the expensive distance calculation that needs to be performed three times across 

different objectives with a progressively higher k value. The dataset used in the experiments was very 

small (only 100 samples), and this is likely because the algorithm doesn’t scale well up to larger datasets. 

 

 3.6. Summary 

Supervised methods are extremely reliant on quality training data, something often hard to find or not 

accessible in outlier detection applications. Most of the reviewed methods for outlier detection also 

involved manual parameter tuning, something which these algorithms are extremely sensitive to. The 

multi-objective approach by Duraj and Chomatek [9] has the most potential for a completely 

unsupervised autonomous algorithm, and was therefore the method we were most inspired to further 

develop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

 4. Research Project 
 

Our first outlier detection method involved taking a GA with the same individual representation as the 

proposed experiments done by Duraj and Chomatek [9], where each individual was a string of 0s and 

1s same length as the number of samples in the dataset, where a 1 meant a sample was labelled as an 

outlier and 0 meant it was an inlier (Figure 2).  

 

 

 

[1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0] 

 
 

 

We chose this representation as it is simple and not too memory intensive, only storing one of two 

integers for each datapoint. We also used the NSGA-II ranking system which in the results [9] found to 

yield the highest accuracy. Unlike the five objectives that they used, we wanted a simpler algorithm that 

used fewer objectives for better performance and easier results visibility. In our first experiments we 

tried using the objective of maximising the average distance from each outlier to its closest non-outlier 

neighbour, similar to the first objective used by Duraj and Chomatek [9] but ignoring other outliers. 

However, because we were minimising the average distance, the genetic algorithm found that for this 

objective the optimal result was to have only one outlier: the outlier furthest from its closest neighbour, 

and therefore the highest average across all (one) points. This meant to return more outliers we needed 

a conflicting objective, so for our second objective we tried maximising the number of outliers. This 

returned many outliers across the approximate Pareto curve, even towards the lower end of the number 

of outliers objective, so we knew this set of objectives wouldn’t be suitable. In a dataset the number of 

outliers is usually minimal and therefore we knew the first distance objective needed to conflict this so 

the number of outliers can be minimised instead. 

 

 4.1. Proposed Genetic Algorithm 

To maximise nearest distances whilst also maintaining many outliers, we tried a slightly different 

objective function of taking the total distance of all outliers to their closest neighbours, rather than the 

average. This now meant the best possible selection was to include every point in the dataset as an 

outlier, so by minimising the number of outliers as our second objective (Equation 4) we were now able 

to generate a diverse range of solutions across the Pareto front with different numbers of outliers. To 

keep the number of outliers from getting too large for both performance issues and keeping it at a low 

reasonable level, we assigned a max number of outliers threshold to 10% of the size of the database. 

This required some domain knowledge as we knew there were fewer than 10% outliers in all three 

datasets we tested on, however this is a good estimate for outlier detection as datasets generally only 

have a very small number of outliers in them. The smaller the threshold, the higher quality the results 

across the Pareto curve are and therefore the higher the chance of automatically selecting a good 

individual, but too small a threshold and too much information will be lost from the fitness function cut-

off. In our fitness calculation, if there were more outliers than the threshold, the distance fitness would 

simply be assigned to 0 (Equation 5). 

 

 

 

 

 

 

Figure 2: Example Individual Representation 
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            𝑁𝑢𝑚 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
𝑛

len(𝑋)
                         𝐷𝑖𝑠𝑡 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  {

         0                                if 𝑛 > 𝑡

   ∑ min
𝑑

𝑑(𝑃𝑖, 𝑃𝑗∈𝑍)       if 𝑛 ≤ 𝑡
𝑛

𝑖∈𝑋

 

 

         
 

where n is the number of outliers in the individual X, t is the maximum number of outliers threshold, 𝑃𝑖 

represents the value of outlier i, 𝑃𝑗 represents the value of j in the non-outlier set Z, and d is the distance 

between them. 

 

We ran this algorithm across three different datasets with different dimensionality and numbers of 

samples, a population size of 100, cross-over rate of 80% and mutation rate of 20%, and for 1000 

generations (except for the first dataset which only needed 500). For the initial population representation, 

we generated a population of individuals with entirely 0s to encourage a start with no outliers and to add 

them slowly through mutation to overall encourage a small number of outliers. The mutation function 

was a simple bit flip which we assigned a 5% chance to randomly flip every gene. We kept the mutation 

rate this low to introduce new outliers into the individuals slowly and prevent too many from reaching 

over the 10% threshold. The crossover function was a one-point crossover, where a random midpoint is 

chosen and two individuals swap half of their genes with each other up to the midpoint, generating two 

new offspring. 

 

On each dataset, the algorithm was run five times across five different seeds, where fitness, precision, 

and recall were stored and an average of each was calculated for evaluation. 

 

 

Lymphography Dataset 
 

We first ran on the lymphography dataset from the UCI machine learning repository [10], which had 

148 records and a dimensionality of 18. It was a multi-class dataset that contained four classes however 

two of those classes have very few samples (2 and 4), so these are combined into a set of 6 outliers, with 

the rest of the data classed as inliers. This dataset was ideal for our investigations, as there was potential 

for some outliers to be within close proximity with each other within one of the small classes, but also 

separate between the two for a variety of outlier types. 

 

 

The runtime was fast at only around 40 seconds, and the final Pareto curve contained 14 individuals 

(Figure 4). From this set we wrote a script to find the best individuals by precision and recall. The 

individual with the best precision predicted 2 outliers, and both were correctly identified for a 1.0 

precision and 0.33 recall. The best individual by recall predicted 12 outliers, of which all 6 were correctly 

identified for a 0.5 precision and 1.0 recall. 

To get an overall selected best from the curve, we normalised both fitness values across the Pareto curve 

between 0 and 1 and found the closest individual to the optimal fitness of [1, 0] (maximum distance, 

minimum number of outliers). On the first run this chose an individual that predicted 6 outliers, of which 

4 were correct for a 0.67 precision and 0.67 recall. We then repeated the algorithm across 5 different 

seeds, and saved the fitnesses, precision, and recall into the table below (Figure 3). 

 

 

 

 

 

 

Equation 4: Number of Outliers Fitness Function Equation 5:  Total Distance Fitness Function 
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 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Num Outliers 
Fitness 0.0405 0.0405 0.0405 0.0405 0.0405 0.0405 

Distance 
Fitness 10.893 10.829 10.902 10.884 10.902 10.882 

Precision 0.67 0.67 0.67 0.67 0.67 0.67 

Recall 0.67 0.67 0.67 0.67 0.67 0.67 

 
 

 

We used UMAP, a dimensionality reduction algorithm, to visualize the multi-dimensional dataset in 

two dimensions. This enabled us to make a scatter plot to compare the predicted outliers with the true 

outliers in the dataset visually on one of the runs (Figure 5). 

 

      

           
 

 

The results on this dataset were consistent, always returning the same number of predicted outliers (6), 

but simultaneously only correct on 4 of them. There was slight variation in the distance fitness across 

the five runs also, with only runs 3 and 5 having the same. This means each run was choosing a slightly 

different selection of outliers, however the 4 outliers correctly identified was always consistent. The 

remaining two outliers proved to be a challenge to detect, however the inconsistency of the two 

misidentified inliers shows the algorithm wasn’t converging on anything specific. 

 

 

Wisconsin-Breast Cancer Dataset 
 

We ran then ran the same algorithm on the Wisconsin-Breast Cancer Dataset [11], also from the UCI 

machine learning repository. This dataset was larger, having 278 data points and 30 dimensions. Because 

the dataset was larger and the individual representation was almost twice as long, we ran the algorithm 

for 1000 generations instead of 500 (which when tested on the previous dataset had no change in results). 

The malignant cases in the two-class dataset were sampled down to 29 datapoints, with benign breast 

cancer cases being the inliers. This was to make the purpose of the outlier detection to be detecting 

malignant cases of breast cancer when amongst a dataset of benign cases. 

Figure 3: Lymphography Dataset Results Table 

Figure 4: Lymphography Dataset Pareto Curve Figure 5: Lymphography Dataset Prediction Plot 



14 

 

 

This time the algorithm took around 2 minutes to train, and the Pareto curve was larger with around 36 

records (Figure 6). The shape of the curve was also interesting, having a noticeable flat section around 

the middle part. This meant there was a small region of around 0.2 to 0.4 number of outliers fitness 

where the algorithm struggled to find individuals with high distance fitness, which when looking at the 

scatter plot of the data (Figure 7) could be because once all the distant outliers were detected the rest of 

the data was too close together to offer much improvement. From this curve we found the best individual 

by precision predicted 13 outliers of which all 13 were correctly identified for a 1.0 precision and 0.62 

recall. The individual with best recall predicted 23 outliers of which 15 were correctly identified for a 

0.65 precision and 0.71 recall. 

 

 

       

                                       
 

 

We once again auto selected the best individual by distance from the optimal [1, 0], and repeated across 

5 seeds. Results on this dataset as shown in Figure 8 performed significantly better on the precision, 

with the best run (Run 2) returning an individual with 0.875 precision, whilst also having the best recall 

at 0.67 (plotted on Figure 7). The average recall however was 0.1 less than the lymphography dataset 

at 0.57. This lower overall recall is likely because of the larger dataset size with more outliers to detect, 

which despite running for twice as many generations still has trouble assigning the right bits into outliers 

when there is such a long individual representation and a low mutation rate. Even when some outliers 

are correctly assigned and found in an individual, there might be too many outliers over the threshold, 

assigning the distance fitness value to 0 and losing this potentially useful information. 

 

This dataset was also used in the multi-objective genetic algorithm investigations done by Duraj and 

Chomatek [9]. However, in their investigations they only used 100 rows of the dataset with 18 

malignant cases as outliers. It wasn’t clear exactly which data points they used so we weren’t able to 

perform an investigation with a completely accurate comparison, although from the results we have 

we can see our algorithm did achieve a higher average precision than all but two results. Average 

recall was not particularly high either, only performing better than the PESA2, although our best run 

was only beaten by two NSGA-II recall results and had the best precision. Overall, our algorithm was 

more accurate in the points it classed as outliers; however, it isn’t possible to confidently say one 

method is objectively better without an identical set of data to compare on. 

 

 

 

 

 

 

Figure 6: WBC Dataset Pareto Curve Figure 7: WBC Dataset Prediction Plot 
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 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Num Outliers 
Fitness 0.0397 0.0423 0.0423 0.0423 0.037 0.0407 

Distance 
Fitness 18.52 18.99 15.24 19.66 16.31 17.74 

Precision 0.87 0.875 0.56 0.75 0.86 0.783 

Recall 0.62 0.67 0.43 0.57 0.57 0.572 

 
 

 

 

Satimage Dataset 
 

There was one more dataset we tested running the algorithm on, and this one was much larger in size. 

Also from the UCI machine learning repository, the Satimage dataset [12] contained pixel information 

from satellite imagery classed into 36 different categories, with class 2 down sampled into the outlier 

class and grouping the rest as inliers. The dataset had 5803 datapoints with dimensionality 36, and there 

were 71 outliers.  

 

This algorithm took significantly longer to run, taking 2 hours to train. The returned Pareto curve 

(Figure 9) contained 249 individuals, and the best precision was one that returned 42 outliers, all of 

them correct for a 1.0 precision and 0.59 recall. However, the automatically selected best based on 

distance to optimum had only 0.19 precision and 0.67 recall, plotted in Figure 10. The Pareto curve was 

returning too many individuals with little improvement over each other, and this made it difficult to 

automatically select the best performer. The number of outliers in relation to the dataset size was also 

significantly smaller than the previous two datasets. The lymphography and WBC had 4.1% and 5.6% 

of their datasets as outliers respectively, whereas in the Satimage only 1.2% of the dataset were outliers. 

Due to the large Pareto front size and lower ideal number of outliers fitness, we knew we would need to 

adjust the optimal position for the auto selected best individual. 

 

          

                 
 

At 2 hours runtime, we wanted to see if we could optimise the algorithm further before testing and 

saving results across 5 seeds, and simultaneously see if we could improve the precision and recall of the 

returned results. 

Figure 8: WBC Dataset Results Table 

Figure 9: Satimage Dataset Pareto Curve Figure 10: Satimage Dataset Prediction Plot 
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 4.2. Version 2.0 Genetic Algorithm 

 

The slowest part of the algorithm is the distance measure in the fitness evaluation, which scales 

tremendously with the size of the dataset, in both number of instances and dimensionality. The program 

must find the closest point from all other non-outliers in the dataset and do this for every single outlier 

adding up the score as the fitness value. This fitness evaluation is applied to every individual at every 

generation in the algorithm, whether it has had mutation or cross-over applied, and this was slowing it 

down. 

 

One method we investigated for optimising the distance calculation was to pre-compute every 

datapoint’s closed neighbour distance and store it in an array before training. This could then be simply 

referenced during the fitness evaluation. However, because we were only looking at the closest distance 

to a non-outlier, and the datapoint labels were constantly being switched during the training, this distance 

was dynamic and would require a large matrix for every possible outlier combination. 

 

Therefore, for our improved genetic algorithm, we decided to change the individual representation in 

such a way as to reduce the number of closest neighbour calculations required. Instead of being 

represented as a simple string of 1s and 0s, we changed it to store the closest neighbour distances. This 

now meant each gene was a float value rather than a simple integer, we kept the same idea that a 0 would 

mean a non-outlier however outliers were now represented by the distance to their nearest non-outlier 

instead of a 1 (Figure 11). 

 

 

 

[0.0, 1.12434, 0.0, 0.0, 7.34675, 0.0, 0.0, 0.0, 4.76607] 

 
 

 

This made the fitness calculation for total distance fitness much simpler, only needing to sum up all the 

values in an individual (Equation 6). 

 

 

 𝐷𝑖𝑠𝑡 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  {
        0              if 𝑛 > 𝑡

   ∑ 𝑋𝑖       if 𝑛 ≤ 𝑡
𝑛

𝑖∈𝑋

 

  
 

 

Now that the distance measure wasn’t being calculated in the fitness function, and was part of the 

representation, we had to make it part of the mutation function. We kept the applied mutation and 

parameters the same, having a 5% chance to flip every gene in the chromosome, however instead of 

simply switching to a 1 when becoming an outlier, we needed to calculate the closest distance. Because 

we were only calculating the distance to the nearest non-outlier, and it was possible that points further 

down the individual might change causing a different result, we replaced all outlier distances with a -1 

until the mutation was complete. Once we had the new individual, we could then loop through all the -

1s and change them to their closest distance values. 

 

Another step we added to the mutation was a function that reduced the number of outliers to beneath the 

threshold. The purpose of this was to try and include as many potentially useful individuals as possible 

without them being assigned 0 fitness and cut from the next generation. We initially tried iterating 

Figure 11: Example of New Individual Representation 

Equation 6:  New Total Distance Fitness Function 



17 

 

through the outliers removing them based on their closest distance value from smallest to largest, as the 

larger the value the further away the outlier. While this worked in most cases on datasets with spread 

apart outliers, we found this would hinder results when clumps of outliers close together are present, as 

it would only take one point labelled as a non-outlier for them all to be misidentified. Therefore, we 

simply selected random outliers in the individual to be converted to inliers, repeatedly until the count 

was less than the max outliers threshold. This did mean it was possible that good outliers could still be 

lost from the individual if randomly chosen, but overall, it kept as much of the original information as 

possible whilst keeping below the fitness threshold. 

 

The crossover function we left the same, selecting a random point to switch two individuals around to 

generate two new offspring. However, on each of the two offspring we added in the same reduce outliers 

step to keep them below the threshold. If the genetic crossover resulted in one individual containing too 

many outliers, they would be randomly switched back into non-outliers iteratively until the number of 

outliers was low enough. 

We then ran the new algorithm across the same three datasets with the same parameters as before. 

 

 

Lymphography Dataset 
 

On the lymphography dataset, the runtime was similar to the previous algorithm at 49 seconds, only 9 

seconds slower, and the Pareto curve was the same size with 14 individuals (Figure 13). The initial 

returned results however were a big improvement, the best individual by precision predicted 4 

individuals with all of them correct for a 1.0 precision and 0.67 recall. The best individual by recall got 

5 of its 7 outliers correct, for a precision of 0.71 and recall 0.83. The automatically selected best by 

distance to [1.0, 0.0] was the same as before however, at 0.67 precision, 0.67 recall. We once again 

repeated across 5 different seeds and saved the results to a table (Figure 12). 

 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Num Outliers 
Fitness 0.0405 0.0473 0.0405 0.0405 0.0405 0.0419 

Distance 
Fitness 11.31 12.67 11.17 11.13 10.798 11.416 

Precision 0.67 0.57 0.67 0.83 0.67 0.682 

Recall 0.67 0.67 0.67 0.83 0.67 0.702 

 
 

Overall, there was a small improvement in both average precision and recall, an increase of 0.012 and 

0.032 respectively. The results this time had more of a variety, with one individual performing 

exceptionally well at 0.83 precision and 0.83 recall (Run 4), plotted in Figure 14. It only had one 

misidentified inlier, and one undetected outlier. Once again, the number of predicted outliers was always 

consistent at predicting 6 outliers, with the exception of one run which predicted 7 for a lower precision 

at 0.57 (Run 2). 

 

Figure 12: Lymphography Dataset Results Table (Version 2.0 Algorithm) 
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Wisconsin-Breast Cancer Dataset 
 

Running the improved algorithm on the WBC dataset, there was a significant time improvement with it 

only taking around 1min 20sec, 40 seconds faster than the previous. The size of the Pareto curve was 

similar again with around 36 individuals, however the shape of the curve was visibly smoother than 

before (Figure 16). The individual by best precision was worse on recall than the previous algorithm, 

at 1.0 precision and 0.38 recall, however the best by recall was better overall at 0.71 precision 0.71 

recall. The automatically selected was similar but slightly worse at 0.8 precision 0.57 recall, which was 

interesting because the number of outliers fitness was the same, yet the distance fitness was 0.58 higher 

at 19.1. This is likely because there are outliers present which are close to each other, and when not both 

identified will cause a smaller closest distance on the ideal outlier. 

 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Num Outliers 
Fitness 0.0397 0.0344 0.0423 0.0423 0.0397 0.0397 

Distance 
Fitness 19.1 17.86 15.96 19.57 14.71 17.44 

Precision 0.8 0.85 0.69 0.81 0.53 0.74 

Recall 0.57 0.52 0.52 0.62 0.38 0.52 

 
 

Saving the results across 5 seeds (Figure 15), both average precision and recall was slightly lower than 

the previous algorithm, so there was no improvement on results there. Neither of the two best runs based 

on precision (Run 2) and recall (Run 4) performed as well as the best individual on the previous program 

either, however Run 4 (Figure 17) was not far behind (0.065 lower precision, 0.05 lower recall). 

Looking at the fitness values, there was also very little difference on average with this algorithm only 

0.001 lower on number of outliers and 0.3 lower on distance fitness. Other than the one run that 

performed terribly (Run 5 with only 0.38 recall), the overall results were very similar, and although they 

were slightly worse on our new algorithm, we managed to cut the training time by a third. 

 

Figure 13: Lymphography Dataset Pareto Curve Figure 14: Lymphography Dataset Prediction Plot 

Figure 15: WBC Dataset Results Table (Version 2.0 Algorithm) 



19 

 

       

                              
 

 

Satimage Dataset 
 

On the Satimage dataset initial results looked extremely similar to the previous algorithm, however the 

main difference was the much faster new runtime. It now took only 52 minutes, which was less than 

half the previous time of 2 hours. The Pareto curve (Figure 19) was large once again with a similar 

number of individuals, with the best by precision predicting 38 outliers correctly for a 1.0 precision and 

0.535 recall. 

 

 Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Num Outliers 
Fitness 0.0112 0.0103 0.0122 0.0103 0.0107 0.0109 

Distance 
Fitness 24.996 24.969 26.481 23.311 24.415 24.834 

Precision 0.6 0.67 0.31 0.67 0.61 0.572 

Recall 0.55 0.56 0.31 0.56 0.54 0.5 

 
 

This time we ran the algorithm 5 times with different seeds like we did on the smaller datasets and saved 

to the table Figure 18. Two runs (Runs 2 and 4) performed equally best with precision 0.67 and recall 

0.56, and they also had the same number of outliers fitness. However, the distance fitnesses were not 

the same. When comparing the plots of both (one shown in Figure 20), the selection of outliers they 

each found was slightly different despite returning the exact same number. 

 

Figure 16: WBC Dataset Pareto Curve Figure 17: WBC Dataset Prediction Plot 

Figure 18: Satimage Dataset Results Table (Version 2.0 Algorithm) 
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Figure 19: Satimage Dataset Pareto Curve Figure 20: Satimage Dataset Prediction Plot 
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 5. Conclusion 
 

 5.1. Evaluation 

Unsupervised outlier detection is certainly a difficult task, and particularly when using GA, it gets 

significantly harder the larger the dataset in both size and dimensionality. In our experiments we 

managed to achieve reasonably high precision and recall on the smaller datasets, but we found that when 

the dataset increased in scale, not only did the individual representation increase and become more 

computationally expensive to perform operations on, but it was also much harder for the right bits to be 

assigned correctly for detecting the outliers themselves. This is because the nature of a GA relies on 

pure random chance to find new promising individuals, and as the size increases the more options there 

are and the lower the chance of these ideal candidates being found. There is potential here for a more 

direct optimisation, making use of a local search through a memetic algorithm could help the GA find 

outliers more efficiently, but with such large individual representation these could quickly become 

expensive. 

 

Keeping the number of outliers low is another challenge of its own, particularly for our algorithm where 

the more outliers in an individual the more closest-distance computations needed to be performed. 

Having a cut-off threshold in the fitness function worked in most cases on the smaller datasets. However, 

when the chromosome size gets too long or the mutation rate gets too high, it can become a problem 

when too many potential individuals are lost for simply having as low as just one extra outlier over the 

threshold. The solution we came up with worked on the first two datasets in our experiments but there 

is plenty of room for future improvement, particularly on the Satimage dataset that could only detect 

half of the outliers (Figure 18). Iterating through the outliers removing them based on a quality or 

probability metric (i.e. change in fitness upon removal) from worst to best would ensure the most 

promising outliers are saved across each generation, however like other local search techniques this is 

challenging to achieve efficiently. 

 

Something else that should be considered is the memory usage and storage when performing large scale 

GA. In our first version the individual representation was made up of integers, which despite only using 

values 0 and 1 were still being stored as a 32-bit integer. The second version used float values, which 

each take up 64-bits, twice the memory usage. The way the individuals in our programs were being 

stored in their array format however, both datatypes took up the same amount of memory (1272 bytes 

on lymphography dataset). This is still something that needs to be considered for future optimisation, as 

we believe the representation on our first algorithm (that used 0s and 1s) might be able to be optimised 

further if some sort of Boolean variable format was used instead. 

 

 5.2. Future Work 

Going forward, we think evolutionary techniques that use individual representations which don’t scale 

significantly with the size of the dataset could be the better option, and therefore a different approach 

such as Genetic Programming (GP) is worth investigating. Using GP, a program designed to determine 

whether a given sample is an outlier based on its data values could be used. A terminal set would include 

the set of variables or columns in the dataset, and an output value could be classed as outlier or inlier 

depending on a threshold, for example < 0 inlier and >= 0 outlier. Such a continuous value could even 

be used to determine the likelihood of a given point being an outlier, rather than being strictly classed 

as one or the other. The flexibility of evolutionary computation allows such an individual representation 

to be compatible with our previously used multi-objective fitnesses, and investigations could be 

performed and directly compared. Despite not having the issue of scaling with the dataset size, the 

distance measure fitness would still have to be calculated at every evaluation step – something we 
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improved with the second version program, and therefore a different fitness function might be needed 

for GP. 

 

Despite not achieving results as high and reliable as we would’ve liked, we were still able to take an 

existing program and significantly improve its computation time. Evolutionary algorithms show strong 

potential for unsupervised outlier detection, but extensive work needs to be done to choose and optimise 

the right representation and method. There are many algorithms for performing EC and parameters to 

fine tune, and therefore plenty of room for future improvement. 
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