
Speeding up Genetic Programming Based
Symbolic Regression Using GPUs

Rui Zhang1, Andrew Lensen2, and Yanan Sun1 ⋆

1 Sichuan University, Chengdu 610000, China
zhang_ray@stu.scu.edu.cn; ysun@scu.edu.cn

2 Victoria University of Wellington, Wellington 6140, New Zealand
andrew.lensen@ecs.vuw.ac.nz

Abstract. Symbolic regression has multiple applications in data mining
and scientific computing. Genetic Programming (GP) is the mainstream
method of solving symbolic regression problems, but its execution speed
under large datasets has always been a bottleneck. This paper describes
a CUDA-based parallel symbolic regression algorithm that leverages the
parallelism of the GPU to speed up the fitness evaluation process in sym-
bolic regression. We make the fitness evaluation step fully performed on
the GPU and make use of various GPU hardware resources. We com-
pare training time and regression accuracy between the proposed ap-
proach and existing symbolic regression frameworks including gplearn,
TensorGP, and KarooGP. The proposed approach is the fastest among
all the tested frameworks in both synthetic benchmarks and large-scale
benchmarks.

Keywords: Symbolic regression · Genetic programming · Parallel algo-
rithm · Graphics processing unit (GPU) · Compute unified device archi-
tecture (CUDA)

1 Introduction

Exploring and learning relationships from data is the central challenge of the
sciences. Among various methods [33,34] for achieving this goal, symbolic regres-
sion [3] which can represents such relationships as a concise and interpretable
function is the most popular [32]. It has a wider range of applications in curve
fitting [14], data modeling [17], and material science [35].

Symbolic regression is achieved as an optimization problem. Given a dataset
(X, y), symbolic regression is achieved by optimizing an interpretable function
f(X) : Rn → R to minimize the loss D(f(X), y). Achieving symbolic regres-
sion has two common approaches: Genetic Programming (GP) method [23] and
neural network (NN) method [6, 24, 28]. As one of the Evolutionary Algorithms
(EA), GP optimizes solutions by imitating the evolution procedure in nature
and aims to find global optima. GP is a generalized heuristic search technique
used to optimize a population of computer programs according to a fitness func-
tion that determines the program’s ability to perform a task. Due to its flexible
⋆ Corresponding author.



2 Rui Zhang, Andrew Lensen, and Yanan Sun

representation and good global search ability, GP is the mainstream method for
solving symbolic regression problems. The advantage of GP-based symbolic re-
gression compared to the recent neural network (NN) methods [6,24,28] is that:
the black-box-like solutions provided by NNs are hard to explain and interpret
by users. In GP-based symbolic regression, each candidate solution in the pop-
ulation is represented as an expression tree, and the evolutionary process of all
participating programs is visible to the user. The user can intuitively discover
the characteristics of the data by the features of the different participating pro-
grams. Therefore, GP can evolve programs with the potential for interpretability.
On the other hand, GP can automatically evolve structures and parameters of
programs, which can eliminate the need for the manual design of NN structures.

However, GP is known for its poor scalability. The main reason is that the
fitness of each GP program is evaluated on the whole dataset in each generation,
causing the GP algorithm to be computationally expensive and time-consuming.
Thus, fitness evaluation is the bottleneck of GP in large-scale problems [8]. There
are various previous works to optimize the fitness evaluation step of GP, such
as caching fitness results of subtree [19], eliminating the need for fitness [7], and
computational parallelization. In symbolic regression problems, using computa-
tional parallelization is the most effective way to speed up the fitness evaluation
step, especially performing parallelizing through GPUs, which can execute thou-
sands of threads in parallel and excel at processing multiple threads using Single
Instruction Multiple Thread (SIMT) [11] intrinsic. The existing GPU approaches
can be broadly grouped into these two categories:

1) Performing data vectorization and leveraging existing data vectorization in-
terfaces. TensorGP [5] and KarooGP [30] are two common GPU-enabled GP
frameworks that support symbolic regression. Both of them are based on the
Tensorflow [1] interface. KarooGP adopts the Graph Execution Model [15] of
Tensorflow and consequently has a slow execution speed. TensorGP requires
a dataset in tensor type, and it does not support regression in real-world
datasets well due to this limitation.

2) Directly leveraging GPU parallelization by involving more threads in the com-
putation of the fitness evaluation phase. A SIMD interpreter [22] is developed
to evaluate the whole population of GP in parallel. The interpreter computes
the intermediate value of the current node each time the kernel is launched,
which avoids the use of switch-case statements on the GPU to identify the
type of the node. However, the frequent launching of kernel functions will
cause the delay. Chitty [9] improves the stack structure and stores the prefix
on the shared memory. Although better performance is obtained compared
to that without memory access restrictions, they do not make greater use of
the GPU hardware resources.

To better leverage the multi-threaded parallel computing capability of the
GPU in GP-based symbolic regression, this paper proposes a GPU parallel ap-
proach to accelerate the fitness evaluation of GP-based symbolic regression. We
use the constant memory for program storage, global memory for the stack that



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 3

records the temporary fitness results, and shared memory for the parallel met-
ric reduction. The whole dataset and the evaluated program are stored in the
device-side memory so that the fitness evaluation step of the proposed method
can be performed entirely on the GPU. In the fitness evaluation process of a
single GP program, the loss of the program in each fitness case will be executed
simultaneously using the GPU parallelism. The experiment results demonstrate
that the proposed approach outperforms other GP-based symbolic regression
frameworks in execution speed without degradation in regression accuracy. The
idea and the novel data structures of the proposed parallel algorithm can be used
not only in symbolic regression but also can be generalized to similar stack-based
GP methods. The contributions of this work are:
1) We create the GPU acceleration in the fitness evaluation step by using the

CUDA C/C++ layer and the code is released at the following address:
https://github.com/RayZhhh/SymbolicRegressionGPU.

2) We accelerate the fitness evaluation step by optimizing data structures for
symbolic regression on the device side and performing a parallel metric reduc-
tion on the GPU, which fully leverages the GPU computational capability.

3) We evaluate the proposed approach against common CPU and GPU frame-
works through synthetic datasets and real-world datasets. The proposed ap-
proach turns out to be the fastest among all regression tasks.

2 Background and Related Work

This section introduces the GP algorithm and its application in symbolic regres-
sion. We also introduce existing GP frameworks that support symbolic regression
algorithms.

2.1 Genetic Programming

GP has four major steps: population initialization, selection, mutation, and eval-
uation. GP algorithm uses random mutation, crossover, a fitness function, and
multiple generations of evolution to resolve a user-defined task. GP programs are
often represented as syntax tree [29]. The structure of the syntax tree is defined
by [29] as follows:
• The ‘leaves’ of the syntax tree are called terminals. They are variables, con-

stants, and no-parameter functions in the program.
• The inner nodes of the tree are called functions.
• The depth of a node is the number of edges that need to be traversed to

reach the node starting from the tree’s root node (which is assumed to be
at depth 0).

• The depth of a tree is the depth of its deepest leaf (terminal).

2.2 Existing GP Frameworks

The gplearn [31] is implemented based on the scikit-learn [27] machine learning
framework. According to [4], gplearn can also perform parallelization, but the



4 Rui Zhang, Andrew Lensen, and Yanan Sun

parallelization can be used only on the mutation step. Our tests did not find that
gplearn’s multithreading parameters could effectively improve the computing
speed. We disabled this parameter in our later benchmarks. DEAP [13] is another
GP framework implemented by Python that provides CPU-based parallelization.

TensorGP and KarooGP are two GPU supported frameworks. Both frame-
works are based on the interface of TensorFlow [1] for data vectorization. In the
fitness evaluation step, TensorGP represents terminal and variable as the tensor
with the same dimension as the input dataset. The metric is calculated by ten-
sor operations (such as tensor multiplication, tensor addition, etc.) provided by
Tensorflow. The required dataset of TensorGP is limited to a tensor for a set of
points uniformly sampled in the problem domain. So it will be inapplicable when
facing real-world problems since the required tensor can not be constructed. Dif-
ferent from TensorGP which leverages the tensor calculation interface, our work
makes more intuitive use of GPU parallelism by having threads perform calcu-
lations on each data point. TensorGP adopts the Eager Execution Model [2] of
TensorFlow, while KarooGP adopts the Graph Execution Model [15] of Tensor-
Flow, which means that in KarooGP, each internal program has to be compiled
into a DAG (Directed Acyclic Graph) before having fitness calculation. Accord-
ing to our experimental results and the conclusion in [4], TensorGP turns out to
be much faster than KarooGP.

Several papers [4,5] adopt Pagie polynomial [26] as the speed benchmark for
GP-based symbolic regression frameworks. Pagie polynomial is considered to be
challenging to approximate and it is recommended by several GP benchmark
articles [16, 25]. According to the results in [4], TensorGP (GPU) is faster than
other CPU and GPU frameworks including gplearn, KarooGP, and DEAP.

3 The Proposed Symbolic Regression Algorithm

In this section, we first explain the challenge in implementation. Then, we demon-
strate the process of our algorithms in chronological order of execution.

3.1 Challenge Faced

Directly porting the CPU code logic to the GPU produces only limited per-
formance improvement. This is because the warp divergence and unconstrained
memory access will greatly influence the performance of the GPU. Warp di-
vergence occurs when threads in a warp execute different code blocks. If they
execute different if-else branches, all threads are blocked at the same time except
the one that is executing, which affects performance. The proposed algorithm
avoids warp divergence and also achieves coalesced data access by optimizing
data structures. Modern GPU architectures provide various components (e.g.,
constant memory, global memory, and shared memory) with different features.
Our work takes the advantage of different components according to specific com-
puting tasks to make full use of the computing resources provided by the GPU.



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 5

[9] improves the stack structure and stores the prefix on the shared memory.
The improvement made in our work is that all blocks in the grid evaluate the
same program. Since there will not be a situation where each block evaluates
a different program, we store the programs in constant memory and leverage
the on-chip cache for memory access acceleration. This avoids the transfer from
global memory to shared memory. Our modification may result in GPU computa-
tional resources not being fully used on small-size datasets, while larger datasets
will ensure that the evaluation of a program will take up all GPU computational
resources.

The flow chart of the proposed algorithm is shown in Fig. 1. In the proposed
algorithm, the initialization, selection, and mutation steps are executed on the
CPU; the fitness evaluation step, which is the most expensive component in most
GP algorithms, is executed on the GPU.

Fig. 1: Process of the proposed algorithm. Memory allocation and free parts on
the GPU are ignored.

3.2 Memory Allocation and Dataset Transfer

This step is the initialization of the framework. Since the dataset will not be
modified on the device memory, we transfer it to the device side at the beginning.
This avoids the delay caused by memory transfer between the host side and
device side during fitness evaluation. We also allocate stack memory space in the
global memory and two arrays for a program in the constant memory, which can
be reused for the fitness evaluation of each generation. On the device side, threads
access memory in warp units. If threads of a warp read data with contiguous
addresses, CUDA will coalesce their accesses, performing only one memory access
request. Therefore, we design data structures for the stack and the dataset on
the device side that support coalesced memory access.

We first allocate device-side memory space through cudaMallocPitch(), then
the dataset is converted into the column-major type (shown in Fig. 2) and trans-
ferred to device-side memory through cudaMemcpy2D(). For column-major stor-
age, each time when threads access variables, the entire row of the dataset is ac-
cessed. As the memory addresses of elements in a row are contiguous, coalesced
memory access is available. To achieve coalesced memory access, we also do not



6 Rui Zhang, Andrew Lensen, and Yanan Sun

Fig. 2: The column-major storage of the dataset on the device side memory can
achieve the coalesced access.

allow threads to allocate independent stack memory. Instead, we consolidate the
stack memory space they need. In our implementation, the stack structure is
essentially a 1D array. Our stack structure is shown in Fig. 3, with 512 threads
per block used in this work.

Fig. 3: Device-side stack allocation.

As shown in Fig. 3, if stack top is zero currently, all the threads will access
memory space in the box on the left side. And so on, if stack top is one, threads
will access memory in the box on the right side. Memory access like this can lead
to a coalesced memory access that will greatly improve memory access efficiency.
The program will not be modified on the GPU, and it will be accessed by all the
threads. In our implementation, a program is stored in constant memory on the
GPU, where a single memory-read request to constant memory can be broadcast
to nearby threads, which saves memory-read-request times and speeds up the
memory access efficiency. In addition, caches can save data of constant memory,
so consecutive reads to the same address will not generate additional memory
access.

3.3 Population Initialization and Selection

Both initialization and selection are carried out on the CPU. Although the GPU
is based on the SIMT (Single Instruction Multiple Threads) architectures, the
performance of the GPU cannot be effectively utilized because threads will per-
form different tasks and execute different instructions when initializing programs,
which affects the performance. The proposed approach supports a user-defined
function set, as well as the three initialization methods including full initializa-
tion, growth initialization, and ramped half-and-half [20]. In the selection step,



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 7

the proposed approach only provides tournament selection [10, 21]. The pro-
posed approach also provides a parsimony coefficient parameter inspired by [31]
to prevent the bloating of programs.

In our implementation, we adopt an elitist preservation approach where the
candidate program with the best fitness of each generation goes directly into
the next generation. Elitist preservation can ensure that the fitness of the next
generation population is not inferior to the current population.

3.4 Mutation

Mutations take place on the CPU because each program is different that using
a GPU is not applicable. The proposed approach supports five mutation types:
• Crossover mutation: A random subtree of the parent tree is replaced by a

random subtree of the donor tree.
• Subtree mutation: A random subtree of the parent tree is replaced by a

random subtree of a randomly generated tree.
• Hoist mutation: Suppose A is a subtree of the parent tree, B is the subtree

of A, hoist mutation replaces A with B.
• Point mutation: A node of the parent tree is replaced by a random node.
• Point replace mutation: Any given node will be mutated of the parent tree.

Note that hoist mutation can lead to a decrease in program depth, which
can prevent the program from bloating. Since the stack structure we mentioned
earlier limits the maximum depth of the program. To avoid overflow during
fitness evaluation, if we find that the depth of a program exceeds the specified
maximum depth after mutation, the hoist mutation will be repeatedly performed
on the program until the depth of the program is less than the specified depth.

3.5 Fitness Evaluation

The fitness evaluation process is the most complicated part of our algorithm. In
this step, the CPU and GPU need to work together. The CPU is responsible
for data copy, and the GPU is responsible for data calculation. A program is
first converted into a prefix expression. Then, it will be transferred to the con-
stant memory allocated before. The process is illustrated in Fig. 4. The prefix is
represented by two arrays that record the values and the types for nodes in the
prefix. The element ‘u’ denotes that the node is a unary function; ‘b’ denotes a
binary function; ‘v’ denotes a variable; ‘c’ denotes a constant. Nodes in different
types will correspond to different stack operations in the kernel function.

The metric calculation and reduction steps are performed on the GPU. Each
thread is responsible for calculating the predicted value for a data point with
the help of our device-side stack. The reverse iteration begins from the last
node to the first node of the program. For each node in the iteration, we make
the corresponding operation according to the type of the node. If the node is
a terminal, the thread simply pushes its value into the stack. If the node is
a function, the thread calculates the value according to the function type and
pushes the result into the stack.



8 Rui Zhang, Andrew Lensen, and Yanan Sun

Fig. 4: Program transfers to the device-side memory. Each expression tree is
represented by a prefix and each node of the prefix is identified by two tokens.

In the metric calculation step, each thread is responsible for the difference
value calculating between the predicted value and its corresponding real value.
The proposed approach supports three metric types, they are:
• MAE (Mean Absolute Error)
• MSE (Mean Squared Error)
• RMSE (Root Mean Squared Error)

The metric result computed by each thread will be stored in the shared memory,
which is an on-chip memory that offers fast access speed.

In the reduction step, each block is responsible for the sum of losses calculated
by its internel threads. The results of blocks are stored in a device-side array
allocated in the global memory, which is then copied to the host side. Fig. 5
shows the reduction process on the device-side and host-side.

Fig. 5: Reduction on the GPU and the CPU.

After we get the sum of losses calculated by each thread, we will calculate the
final loss result according to the specified loss function. The above procedures
complete the evaluation of a single program, so these steps will be repeated until
all programs in the population obtain fitness. Note that the bank conflict needs
to be avoided in parallel reduction design, which occurs when multiple threads
simultaneously access different addresses of the same bank. Our implementation
ensures that threads in a warp are scattered across different banks during the
shared memory access to avoid bank conflict. The kernel function of the proposed
algorithm is shown in Algorithm 1.

4 Experiments and Results

This section presents our experimental results on synthetic datasets and large-
scale real-world datasets.



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 9

Algorithm 1: Kernel function
Input: prefix, stack, dataset, realValue, result
Output: none
for node in prefix do

doStackOperation(node, stack, dataset);
end
metric = square(stack.top() - realValue);
sharedMem[threadID] = metric;
synchronize();
for i in [256, 128, 64, 32, 16 , 8, 4, 2, 1] do

// the loop is expanded in our inplementation
if threadID < i then

sharedMem[threadID] += sharedMem[threadID + i];
end
synchronize();

end
result[blockID] = sharedMem[0];

Table 1: Hardware and software specifications in synthetic benchmarks and large-
scale benchmarks.

Component Specification Component Specification
CPU AMD Ryzen 5 5600H CUDA Tool Kit Version 11.5
GPU NVIDIA RTX 3050 Laptop OS Windows 11

GPU RAM 4.0 GB Host RAM 16.0 GB

4.1 Benchmarks on Synthetic Datasets

We compare the average execution times between gplearn (CPU), TensorGP
(GPU), KarooGP (GPU), and the proposed approach. We also test the best
fitness after 50 iterations under different dataset sizes [4]. All tests employed in
synthetic benchmark concern the approximation of the Pagie Polynomial [26]
function defined by Equation 1, following the conventions of GP community
[4, 16,25].

f(x, y) =
1

1 + x−4 +
1

1 + y−4 (1)

We generate 7 datasets of different size from 64 × 64 = 4, 096 data points
to 4096 × 4096 = 16, 777, 216 by uniformly subsampling data points from the
domain (x, y) ∈ [−5,−5]× [−5,−5]. Framework parameters are listed in Tab. 2.

In our synthetic dataset experiment, we first compare the execution time of
different frameworks in different dataset sizes. We ran each experiment 30 times
and calculated the average execution time. The experimental results are shown
in Tab. 3 and Fig. 6.

It can be seen from Tab. 3 that the proposed approach performs a faster train-
ing speed than other GPU and CPU frameworks for different sizes of datasets.
Compared to gplearn which only supports CPU execution, the proposed ap-
proach achieves a maximum speedup of 170× acceleration on the fourth dataset



10 Rui Zhang, Andrew Lensen, and Yanan Sun

Table 2: Parameters for benchmarks.
Parameter Value Parameter value

Population size 50 Generations 50
Tournament size 3 Fitness metric RMSE

Maximum initial depth 10 Maximum allowed depth 10
Crossover probability 0.9 Function set +, -, ×, ÷, sin, cos, tan
Mutation probability 0.08 Initialization method Ramped Half and Half

Table 3: Average execution time of 30 runs on NVIDIA GeForce RTX 3050
Laptop GPU for various frameworks (lower is better). The symbol of “DNF”
denotes that the test does not finish within three hours. The symbol of “MAF”
denotes that the memory allocation failed on the GPU. The bold marks the
minimum execution time for each test.

Framework 4,096 16,384 65,536 262,144 1,048, 576 4,194,304 16,777,216
Our Approach 0.152 0.215 0.193 0.331 0.886 3.034 11.851

TensorGP (GPU) 5.655 6.873 6.236 6.473 6.535 17.334 MAF
KarooGP (GPU) 27.42 47.92 60.08 123.97 367.21 DNF DNF
gplearn (CPU) 1.731 2.936 8.897 53.006 174.228 DNF DNF

(1,048,576 data points). The proposed approach is also faster than the two GPU-
supported frameworks across each dataset. To discuss the influence of GPU mod-
els on the proposed algorithm, we also compare the execution speed on different
GPUs. The hardware and software specifications are shown in Tab. 4. As shown
in Tab. 5, the proposed approach is faster than TensorGP (GPU) in all GPU
models.

Table 4: Hardware and software specifications in various GPUs tests.
Component Specification Component Specification

CPU Intel Xeon Gold 6310 @ 2.1GHz RAM 32.0 GB
CUDA Tool Kit Version 11.0 OS Ubuntu 18.04.5

From these tests, we notice that under different GPU models, TensorGP did
not show an increasing trend in the dataset of 642 to 10242 data points. This may
be because the GPU-based tensor calculating interface provided by Tensorflow
works well for large-scale tensors, but there is little optimization for smaller
tensors. For the proposed algorithm, the regression time in 642 to 5122 data
points are similar, and the regression time of 5122 to 40962 dataset is close to
linear growth, this is because datasets less than 5122 data points in our test do
not use up all the computing resources provided by the GPU, and the computing
resources of the GPU have been exhausted for datasets in larger sizes that more
computing tasks have to line up and show a linear growth of the regression time.
We also notice that TensorGP has a much more memory consumption than the
proposed method. The memory allocation for the 40962 dataset failed on the
RTX 3050 Laptop GPU with four GB of device memory. This is because that
tensor is a complex data structure, so the encapsulation of the dataset requires
extra memory space.



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 11

642 1282 2562 5122 10242 20482 40962
0.1

1

10

100

1,000

Datapoints

A
v
er

a
g
e

E
x
ec

u
ti

o
n

T
im

e
(s

)

Our Approach

TensorGP

gplearn

KarooGP

Fig. 6: Log-Log Plot of Execution Time for various frameworks on NVIDIA RTX
3050 Laptop GPU (Lower is better).

Table 5: Execution times on various GPUs in seconds (lower is better). The bold
marks the minimum execution time for each test.

Framework GPU 642 1282 2562 5122 10242 20482 40962

TensorGP RTX 2080 Ti 5.751 5.834 5.428 5.03 5.503 8.168 28.31
Our Approach 0.086 0.085 0.114 0.149 0.353 1.138 3.561

TensorGP RTX 3090 9.014 8.769 8.551 9.338 9.618 8.7 14.482
Our Approach 0.099 0.094 0.155 0.148 0.32 0.806 2.605

TensorGP NVIDIA A100 7.984 6.834 7.568 7.234 6.934 7.301 19.413
Our Approach 0.139 0.140 0.184 0.173 0.354 0.847 2.686

TensorGP RTX A6000 8.602 8.454 9.290 7.593 8.528 8.133 22.072
Our Approach 0.154 0.138 0.167 0.234 0.470 1.225 3.486

We also analyze the regression accuracy of the proposed approach under
different dataset sizes (shown in Tab. 6). Compare with the corresponding fitness
results according to Tab. 6, the regression accuracy of the proposed approach
on synthetic datasets is close to TensorGP. Therefore, on the premise of similar
regression accuracy, the proposed approach is faster than TensorGP in execution
speed.

4.2 Large-Scale Benchmarks

We run large-scale benchmarks on two datasets usually used to compare gradient
boosting frameworks. In particular, we consider the Airline [18] and YearPredic-
tionMSD [12] datasets with 115M and 515K rows respectively.

Since both of these two datasets are not able to transform to a Tensor form
that TensorGP needs, experiments are carried out only on the proposed ap-
proach, KarooGP, and gplearn. Each framework will run three times for each



12 Rui Zhang, Andrew Lensen, and Yanan Sun

Table 6: Table showing the best RMS Error after 50 iterations.
Size Our Approach TensorGP Size Our Approach TensorGP
4,096 0.233± 0.045 0.274± 0.048 1,048,576 0.242± 0.052 0.253± 0.066
16,384 0.258± 0.041 0.211± 0.065 4,194,304 0.246± 0.045 0.237± 0.078
65,536 0.246± 0.047 0.265± 0.058 16,777,216 0.247± 0.060 –
262,144 0.240± 0.052 0.239± 0.050

dataset, and we record the execution time and best fitness after 50 generations
of these experiments.

A total 18 runs were performed on gplearn, KarooGP, and the proposed
approach. Karoo GP did not finish on the Airline dataset in less than an hour. So
we only compared with gplearn on the Airline dataset. Tab. 7 lists the regression
accuracy and average execution time in seconds after 50 iterations.

Table 7: Table containing mean execution time and best fitness across three runs
for gplearn, KarooGP, and the proposed approach on Airline and Year datasets.
The symbol of “DNF” denotes that the test do not finish within an hour.

Airline Time Airline Fitness Year Time Year Fitness
Our Approach 4.099 37.806 0.629 21.779

gplearn 251.178 37.757 150.119 22.045
KarooGP DNF DNF 772.822 22.063

We notice that the regression accuracy of different frameworks was similar
across these two datasets, the proposed approach achieves a speedup of 200×
acceleration compared to gplearn and a 1200× acceleration compared to Ka-
rooGP on the YearPredictionMSD dataset. Through these tests, we conclude
that our algorithm can effectively improve the execution speed through GPU
parallelization under the premise of achieving similar regression accuracy.

5 Summary

This paper introduces a GPU parallelization algorithm to accelerate the GP-
based symbolic regression. We optimize memory access by using column-major
storage for the dataset, and a stack space that supports coalesced access for
threads. We also implement a GPU-side reduction that avoids bank conflict.
After training, the proposed approach preserves the best program in the last
generation and its corresponding metric. This program can be considered the
optimal solution to the symbolic regression. Our experimental results show that
the proposed approach performs faster execution speed than gplearn, TensorGP,
and KarooGP. This indicates that the proposed algorithm can effectively improve
the execution speed of symbolic regression through parallel computation in the
fitness evaluation step. In particular, the fast execution speed on large datasets
indicates that the proposed method has the potential to allow GP-based symbolic
regression to be applied to large problems that it currently is not able to be.



Speeding up Genetic Programming Based Symbolic Regression Using GPUs 13

References

1. Abadi, M., Agarwal, A., Barham, P., et al.: Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems (2016)

2. Agrawal, A., Modi, A.N., Passos, A., et al.: Tensorflow eager: A multi-stage,
python-embedded DSL for machine learning. CoRR abs/1903.01855 (2019)

3. Awange, J.L., Paláncz, B.: Symbolic Regression, pp. 203–216. Springer Interna-
tional Publishing, Cham (2016)

4. Baeta, F., Correia, J.a., Martins, T., et al.: Speed benchmarking of genetic pro-
gramming frameworks. In: Proceedings of the Genetic and Evolutionary Computa-
tion Conference. pp. 768–775. GECCO ’21, Association for Computing Machinery,
New York, NY, USA (2021)

5. Baeta, F., Correia, J., Martins, T., et al.: Tensorgp – genetic programming engine
in tensorflow. In: Applications of Evolutionary Computation, pp. 763–778. Lecture
Notes in Computer Science, Springer International Publishing, Cham (2021)

6. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic
regression that scales. CoRR abs/2106.06427 (2021), https://arxiv.org/abs/
2106.06427

7. Biles, J.A.: Autonomous genjam: Eliminating the fitness bottleneck by eliminating
fitness. In: In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence Workshop Program. vol. 7 (2001)

8. Cano, A., Zafra, A., Ventura, S.: Speeding up the evaluation phase of gp classifi-
cation algorithms on gpus. Soft Computing 16, 187–202 (2012)

9. Chitty, D.M.: Improving the performance of gpu-based genetic programming
through exploitation of on-chip memory. Soft Computing 20, 661–680 (2016)

10. Chitty, D.M.: Exploiting tournament selection for efficient parallel genetic pro-
gramming. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity,
M. (eds.) Advances in Computational Intelligence Systems. pp. 41–53. Springer
International Publishing, Cham (2019)

11. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2012)

12. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.
uci.edu/ml

13. Fortin, F.A., De Rainville, F.M., Gardner, M., Parizeau, M., Gagné, C.: Deap: Evo-
lutionary algorithms made easy. Journal of Machine Learning Research, Machine
Learning Open Source Software 13, 2171–2175 (2012)

14. H., L., S., Y.: Genetic programming approach to curve fitting of noisy data and its
application in ship design. Transactions of the Society of CAD/CAM Engineers 9
(2004)

15. Handley, S.: On the use of a directed acyclic graph to represent a population of
computer programs. In: Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational Intelligence. pp. 154–159
vol.1 (1994)

16. Harper, R.: Spatial co-evolution: quicker, fitter and less bloated. In: Proceedings of
the 14th annual conference on genetic and evolutionary computation. pp. 759–766.
GECCO ’12, ACM (2012)

17. Icke, I., Rosenberg, A.: Multi-objective genetic programming projection pursuit for
exploratory data modeling (2010). https://doi.org/10.48550/ARXIV.1010.1888

18. Ikonomovska, E.: Airline dataset:for evaluation of machine learning algorithms on
non-stationary streaming real-world problems (2009), http://kt.ijs.si/elena_
ikonomovska/data.html



14 Rui Zhang, Andrew Lensen, and Yanan Sun

19. Keijzer, M.: Alternatives in subtree caching for genetic programming. In: Keijzer,
M., O’Reilly, U.M., Lucas, S., Costa, E., Soule, T. (eds.) Genetic Programming.
pp. 328–337. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

20. Koza, J.: Genetic programming: On the programming of computers by means of
natural selection. Complex Adap. Syst. 1 (1992)

21. Koza, J.: Genetic programming as a means for programming computers by natural
selection. Statistics and computing 4(2), 87 (1994)

22. Langdon, W.B., Banzhaf, W.: A simd interpreter for genetic programming
on gpu graphics cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Al-
cázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) Genetic Program-
ming. pp. 73–85. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

23. Langdon, W.B., Poli, R., McPhee, N.F., et al.: Genetic programming: An introduc-
tion and tutorial, with a survey of techniques and applications. In: Computational
Intelligence: A Compendium, pp. 927–1028. Studies in Computational Intelligence,
Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

24. Martius, G., Lampert, C.H.: Extrapolation and learning equations. CoRR
abs/1610.02995 (2016), http://arxiv.org/abs/1610.02995

25. McDermott, J., White, D.R., Luke, S., et al.: Genetic programming needs bet-
ter benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and
Evolutionary Computation. pp. 791–798. GECCO ’12, Association for Computing
Machinery, New York, NY, USA (2012)

26. Pagie, L., Hogeweg, P.: Evolutionary Consequences of Coevolving Targets. Evolu-
tionary Computation 5(4), 401–418 (1997)

27. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: Machine learning
in python. Journal of Machine Learning Research 12, 2825–2830 (2012)

28. Petersen, B.K., Larma, M.L., Mundhenk, T.N., Kim, S., Kim, J.T., San-
tiago, C.P., Administration, U.N.N.S.: Deep symbolic regression, version
1.0 (12 2019). https://doi.org/10.11578/dc.20200220.1, https://www.osti.gov/
/servlets/purl/1600741

29. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic pro-
gramming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008)

30. Staats, K., Pantridge, E., Cavaglia, M., et al.: Tensorflow enabled genetic program-
ming. In: Proceedings of the Genetic and Evolutionary Computation Conference
Companion. pp. 1872–1879. GECCO ’17, Association for Computing Machinery,
New York, NY, USA (2017)

31. Stephens, T.: Genetic programming in python with a scikit-learn inspired api:
Gplearn (2016), https://github.com/trevorstephens/gplearn

32. Tohme, T., Liu, D., Youcef-Toumi, K.: Gsr: A generalized symbolic regression
approach (2022). https://doi.org/10.48550/ARXIV.2205.15569, https://arxiv.
org/abs/2205.15569

33. Tohme, T., Vanslette, K., Youcef-Toumi, K.: A generalized bayesian approach
to model calibration. Reliability Engineering & System Safety 204, 107–
141 (dec 2020). https://doi.org/10.1016/j.ress.2020.107141, https://doi.org/10.
1016%2Fj.ress.2020.107141

34. Tohme, T., Vanslette, K., Youcef-Toumi, K.: Improving regression uncertainty esti-
mation under statistical change. CoRR abs/2109.08213 (2021), https://arxiv.
org/abs/2109.08213

35. Wang, Y., Wagner, N., Rondinelli, J.M.: Symbolic regression in materials science.
MRS Communications (2019). https://doi.org/10.48550/ARXIV.1901.04136


