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ABSTRACT

Genetic programming (GP) has been applied to image classification
and achieved promising results. However, most GP-based image
classification methods are only applied to small-scale image datasets
because of the limits of high computation cost. Efficient acceleration
technology is needed when extending GP-based image classification
methods to large-scale datasets. Considering that fitness evaluation
is the most time-consuming phase of the GP evolution process and
is a highly parallelizable process, this paper proposes a CPU multi-
processing and GPU parallel approach to perform the process, and
thus effectively accelerate GP for image classification. Through
various experiments, the results show that the highly parallelized
approach can significantly accelerate GP-based image classification
without performance degradation. The training time of GP-based
image classification method is reduced from several weeks to tens
of hours, enabling it to be run on large-scale image datasets.

CCS CONCEPTS

« Computing methodologies — Genetic programming; Paral-
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1 INTRODUCTION

Genetic programming (GP) [8] is one of the evolutionary computa-
tion (EC) techniques based on the Darwinian theory of evolution.
Due to its flexible representation and good global search ability,
GP has multiple applications in machine learning tasks including
image classification [6].
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Although GP has been applied to different image classification
tasks and achieved promising results, one notable problem is how its
computational efficiency can be improved to allow its use on large-
scale datasets. Many well-known image classification benchmark
datasets, such as CIFAR-10 (50000 training images) and ImageNet
(1.2 million training images), have a large number of images for
training and testing, while most GP-based image classification are
only applied to small-scale image datasets, such as FS (1300 training
images) and VDGB (247 training images). GP-based image classi-
fication is hard to scale because of high computation cost. Fitness
evaluation is the major bottleneck causing the GP algorithm to be
computationally expensive. According to [5], approximately 94%
of the training time in GP algorithms is taken by the evaluation
stage. Specifically, during each iteration, every individual in the
population need to be evaluated. In the image classification tasks,
the fitness of each GP individual is often evaluated on the whole
training dataset. When the number of images in the training dataset
is large, the evaluation cost of even a single individual is rapidly
increased.

To address the issue, in this paper, we propose a new two-level
parallelism approach consisting of CPU multi-processing and GPU
parallel to accelerate GP-based image classification. Specifically,
we use CPU multi-processing techniques to perform fitness evalua-
tion of multiple GP trees in the population in parallel. And in the
process of one GP tree’s fitness evaluation, the transformation of
all images in the training dataset into thousands of feature vectors
will be executed simultaneously using the mechanism of GPU hy-
per multi-threaded parallelism. Through various experiments, the
results show that the speed up brought by the proposed approach
outperform other accelerating GP-based image classification ap-
proaches. The proposed approach would not reduce the scale of
fitness evaluation and thus not lead to performance degradation.

2 THE PROPOSED METHOD

The overall framework of the proposed GP-based image classifica-
tion is composed of several steps including population initialization,
fitness evaluation, selection and offspring generation. The popu-
lation consists of hundreds of GP programs. In fitness evaluation,
the classification accuracy on the training dataset is calculated and
used as the fitness of each program. Then GP programs are se-
lected based on the fitness and perform the genetic operators with
a certain probability to generate offspring. The fitness evaluation
and population generation repeat until a pre-defined termination
criterion, for example, max generation, is satisfied and then the
best program is returned as the solution found by the GP algorithm.
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The best GP program is then evaluated on the test dataset to verify
its classification performance.

2.1 The GP Program Structure, Function Set,
and Terminal Set

In order to make the programs evolved by the GP algorithm ap-
plicable for image classification tasks, we develop a flexible GP
program structure. We also specifically design the function set and
the corresponding terminal set to make sure each GP program can
be executed independently on different images, which is needed to
achieve image parallel.

2.1.1  GP Program Structure. The proposed GP program structure
is based on strongly typed GP (STGP) [9] and can be divided into
four layers including the input layer, the intermediate layer, the
concatenation layer and the output layer. In the input layer, the
original image is taken as the input of the GP tree. Some randomly
generated constants are also taken as the input for the execution
of some functions, such as conv, maxpool, etc. In the intermediate
layer, there are multiple types of functions employed for region
cropping and selection, image processing, feature extraction, and
feature compression. Unlike CNNss, functions in the intermediate
layer are not fixed, which means the specific GP program structure
is determined through evolution. After the intermediate layer, the
concatenation layer concatenates all the features from subtrees into
a feature vector. At last, the output layer returns the final feature
vector. Compared with the previous GP-based image classification
methods, the GP program structure in the proposed method is
not explicitly divided by steps or in a predefined order, e.g. region
selection first, then feature extraction. Moreover, various processing
steps can be reused when building the GP program. This change
brings more flexibility for GP to evolve the program structure.

2.1.2  Function Set and Terminal Set. The functions designed in
the proposed method is inspired by CNNs. Specifically, the concat
function is used in the concatenation layer, by concatenating all
the features from subtrees into a feature vector. Other functions
are all used in the intermediate layer. Particularly, The regions
and regionr function directly perform on the image and select a
square or rectangular area of interest. The conv, maxpool and ReLU
functions can be used for both raw images and processed images,
and the order between them is not restricted. The gen_filter func-
tion generate filters of different size and different type to perform
convolution. The mean and std function obtain the statistics like
mean, standard deviation of pixel matrix. The pixeladd, pixelsub,
pixelmul and pixeldiv function directly perform on images to ob-
tain some pixel calculation results. Instead, the numadd, numsub,
nummul, numdiv and numneg function are mainly used to calculate
results from statistics. The if_else function introduce conditional
statements into the GP program. The mixadd and mixsub perform
addition and subtraction with weights.

The terminals includes the following. The inputs of the proposed
method are raw images. The row and col terminals are used to
locate a specific pixel, so the range of them is from 0 to the height or
width of image. The randomd terminal is used to generate random
numbers for using in some functions. The windowx, windowy and
windowsize terminals are used in the regions and regionr function,

Zeng, et al.

where the windowx and windowy represent the coordinates of
the upper left point and the windowsize represent the length and
width of the selected area. The filtersize and filtertype are used
to determine the convolution filters used in the conv functions.
The filtertype includes random, mean, gauss, prewitt, sobel and
laplace.

2.2 Fitness Evaluation and the Parallel
Approach

In the proposed method, the fitness of a GP program is evaluated
using training classification accuracy. Specifically, the GP program
is used to transform each image in the training dataset into feature
vectors. Since feature vectors from different subtrees may not be
on the same order of magnitude and in order to avoid some of the
feature vectors dominating the classification results, all feature vec-
tors are then normalized using the min-max normalization method.
Since the normalized feature vectors can not directly reflect clas-
sification effect, we feed the feature vectors into a linear support
vector machine (SVM) [4] to calculate the classification accuracy.
To improve the generalization ability of the evolved program, 5-fold
cross-validation is used for SVM, and the mean accuracy of 5 folds
is obtained and employed as the fitness value of the GP program.
Since fitness evaluation is the bottleneck causing GP algorithm
computationally expensive, we analyze the process and find it is a
highly parallelized process, which can be summarized as individual
parallel and image parallel:

o Individual parallel means that the same fitness evaluation
function needs to be performed on each individual in the
whole population independently. The fitness evaluation of
one individual is not influenced by other individuals, so we
can easily conduct the fitness evaluation of multiple individ-
uals in parallel.

Image parallel means that thousands of images are trans-
formed into a number of feature vectors through the same
GP program in the process of one individual’s fitness eval-
uation, which means the same functions are performed on
different images. As a result, we can conduct the execution
of a GP individual on multiple images in parallel.

According to the high parallelism in GP algorithm, we propose
a two-level parallel approach with CPU multi-processing and GPU
parallel to accelerate the process. The details of the proposed two-
level parallel approach is illustrated in Fig. 1. First, the individual
parallel is performed utilizing the CPU multi-processing mecha-
nism. Specifically, after the population initialization, all GP pro-
grams in the population need to be evaluated. We launch a multi-
processing pool where there are multiple subprocesses to perform
the fitness evaluation. The fitness evaluation function are mapped to
different GP programs. The evaluation process of different GP pro-
grams are independent, so a subprocess carries on a GP program’s
fitness evaluation and all subprocesses can execute in parallel. If
the multi-processing pool is not full, a program’s fitness evaluation
would be performed immediately using a new subprocess instead of
waiting for other programs’ fitness evaluation to end. If sufficient
resources are available, fitness evaluation of all programs can be
performed simultaneously.



Large Scale Image Classification Using GPU-based Genetic Programming

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

— Host

concat(num

std(img)), std(img), std(conv(img,

gen _filter(5, 'sobel_lu")))

LISP format of executable code

@5{5 o

" n Grid
g. 21, 16, 49)), mean(img)),... ..., L_N Block
|::> I:> num. sub(std(maxP(img, 2, 4)), '='l; Kernel | —=—, (0. 0)

Device

GP Individual 2

CPU Multi-processing

Sy

Block | | Block Block
(1, 0) (2, 0) (3. 0)
" "
Block Block Block Block
(, Zlf (1,31 N (2, 31) (3,31
L S
- 1
,/’ /'/ 1 \\\
- ’ 1 N
- ’ ' N,
e v’ ) Y
- . ' \
Block (1, 31)
Thread | Thread Thread | Thread
(0,0) (1,0) (14,0) (15,0)
Thread | Thread we | Thread | Thread
0,1) @€n 14,1) (15,1)
Thread | Thread Thread | Thread
(0,2) 1,2 (14, 2) (15, 2)
Global Memory in GPU |':(>
= Feature Vectors
P e we N
=y
Image Dataset
SVM classifier
as the fitness of GP individual 1
classification accurac <‘,:| k-folds cross
4 validation

GP Individual N

Figure 1: The proposed CPU multi-processing and GPU parallel approach.

In the fitness evaluation of a GP program, thousands of images
are transformed into a number of feature vectors via the same in-
structions (GP program), which is in line with the SIMD intrinsic
of GPU [1]. Therefore, we perform image parallel using the mecha-
nism of GPU hyper-multithreaded parallelism. This means that one
GPU thread represents the execution of a GP program on an image.

In the proposed approach, we take the transformation of an
image into a feature vector through a GP program as a kernel
function and the rest part of fitness evaluation function as the host
function. The kernel function is executed on the GPU, while the
host function is performed on the CPU. In order to conduct the
kernel function (mainly GP program) on the GPU, we implement
all the functions in the function set on CUDA. Considering the
organization of threads, we launch a grid in GPU for each kernel
function. There are multiple blocks in the grid and in each block
there are hundreds of threads. Since CUDA executes instructions
using warps of 32 threads in parallel, the number of threads in the
same block is better set to a multiple of 32. Since a GPU thread
processes on an image, the exact number of blocks per grid and
threads per block is determined by the size of image dataset. After
completing the organization of GPU threads, we copy the entire
image dataset to the global memory of GPU. Specifically, an image
is assigned to a thread, and when a thread executes, it finds the
corresponding image in the memory according to three CUDA built-
in structures including blockIdx, blockDim and threadldx. We also
allocate an empty device array on GPU, whose size is determined
by the size of image dataset, to store the results obtained by each
thread processing the image. When the kernel function is finished,
the whole results matrix would be copied back to host, then the
classification accuracy would be calculated as the fitness of the GP
program.

3 EXPERIMENTS AND RESULTS

3.1 Experiment Design

3.1.1 Benchmark Datasets. The proposed method is evaluated on
five popular image classification benchmark datasets of different
types of tasks and various sizes including the facial expression classi-
fication dataset (FEI_1), the texture classification dataset (KTH), the
digit recognition dataset (MNIST), the object classification dataset
(CIFAR-10), and the real-world digit recognition dataset (SVHN).
Among these datasets, FEI_1 and KTH are commonly used in exist-
ing GP-based image classification methods. MNIST, CIFAR-10 and
SVHN are not widely used because of their large size.

3.1.2 Baseline Methods. In the small-scale dataset such as FEI 1
and KTH, we compare the proposed method with the latest GP-
based image classification methods including EGP, COGP, and FGP
[3]. Multiple existing GP libraries including DEAP [7] and gplearn
[10] provide support for accelerating GP algorithms, we compare
the proposed method with these libraries. Since DEAP and gplearn
are only libraries instead of specific image classification methods,
we implement a GP-based image classification algorithm on them.

As is mentioned in Section 1, existing GP-based image classifica-
tion methods are almost impossible to apply to large-scale datasets.
For instance, the training time of COGP on CIFAR-10 is more than
2,000 hours for one time run. Therefore, for large-scale datasets such
as MNIST, CIFAR-10, and SVHN, we add two efficient acceleration
strategies including Instance Selection-Based Surrogate-Assisted
(ISS) GP and Divide-and-Conquer (DC) GP [2] for comparison. In
ISS, five surrogate subsets are selected from the whole training
dataset using instance selection. In DC, the training dataset is ran-
domly split into four non-overlapping subsets preserving class ratio.
For a fair comparison, the GP program structure as well as the cor-
responding function set and terminal set in ISS and DC are identical
with the proposed method.
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3.1.3 Hardware Setup and Parameter Settings. All experiments
were carried out in the computer with GeForce RTX 2080Ti and
the number of CPU cores is 16.To implement the proposed method,
some key parameters are defined below. Firstly, we use the ramped
half-and-half method to generate the population of 500 individuals.
The number of generations is set to 50. Secondly, for genetic oper-
ators, the genetic operators used in our approach include elitism,
crossover, and mutation, and their probabilities are 1%, 70%, 29%,
respectively. The mutation operators used in the proposed method
includes point mutation and subtree mutation. Lastly, for selec-
tion, we use the tournament scheme to perform selection, and the
tournament size is set to 5.

3.2 Results and Discussion

Table 1: Training Time Cost (hours) and Classification Accu-
racy (%) of the Proposed Method and Baseline Methods on
Five Benchmark Datasets

Dataset  Method Training Time Classification
(h) Accuracy (%)
EGP 17.86 96.0
COGP 1.67 94.0
FEL 1 FGP 1.99 96.0
Gplearn 3.23 94.0
DEAP 0.59 94.0
Our Method  0.18 94.0
EGP 117.02 78.02
COGP 27.38 78.52
KTH FGP 21.29 96.88
Gplearn 21.12 76.36
DEAP 6.72 77.27
Our Method  3.32 78.48
DEAP 244.26 83.94
MNIST ISS 58.71 82.38
DC 48.53 81.12
Our Method  21.06 87.08
DEAP 303.25 39.47
CIFAR-10 ISS 110.70 41.64
DC 74.62 39.96
Our Method  32.74 40.23
DEAP 434.81 60.38
SVHN ISS 85.35 58.20
DC 82.96 59.12
Our Method  35.46 61.93

The experimental results of the proposed method and the base-
line methods are shown in Table 1. In terms of training time, which
is the main concern of the paper, Table 1 shows that the proposed
method uses significantly shorter training time than baseline meth-
ods on all the five benchmark datasets. Specifically, in small-scale
datasets like KTH, existing GP-based image classification meth-
ods typically require training time more than twenty hours, while
the proposed method can finish training in several hours. In ad-
dition, the acceleration effect of the proposed method becomes
more effective when the dataset size gets larger. For instance, the
training time of the proposed method on KTH is half of that in
DEAP. While in large-scale datasets such as MNIST and CIFAR-10,
the training time of the proposed method is only about one tenth
of that of DEAP. This is because as the size of datasets increases,
the proposed method launches more threads in GPU to deal with
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the execution of GP programs, which devotes more space and does
not result in a dramatic increase in training time. Thus the mas-
sive data parallelism in GPU can be fully utilized when training
on large-scale datasets. In conclusion, the proposed method can
effectively accelerate the training of GP algorithm and is applicable
to large-scale image datasets currently.

Table 1 shows that the proposed method can achieve promising
results on the benchmark datasets in terms of classification accuracy.
Firstly, comparing with other GP-based image classification meth-
ods, the proposed method achieves similar classification results
to EGP and COGP. However, the proposed method takes signifi-
cantly less training time than EGP and COGP with similar accuracy.
FGP achieves much better results on KTH dataset. This is because
FGP use more expert-designed feature extraction methods in the
function set. Besides, compared with other acceleration strategies,
the proposed method achieves comparable or better classification
results than two effective acceleration methods including ISS and
DC. According to the experimental results, we can conclude that
the proposed method can significantly speed up GP-based image
classification without degrading the performance.

4 CONCLUSION

The paper develops an effective approach to accelerate the evolution
of GP for image classification with the aim of applying GP-based
image classification methods to today’s increasingly large datasets.
We propose a new two-level parallelism approach consisting of CPU
multi-processing and GPU parallel to accelerate GP-based image
classification methods. Then we conduct a series of experiments to
demonstrate that the proposed approach can effectively reduce GP
evolution time without performance degradation, and successfully
apply GP-based image classification to large-scale image datasets.
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