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Abstract—Manifold learning is a widely used technique for
reducing the dimensionality of complex data to make it more un-
derstandable and more efficient to work with. However, current
state-of-the-art manifold learning techniques — such as Uniform
Manifold Approximation and Projection (UMAP) — have a
critical limitation. They do not provide a functional mapping from
the higher dimensional space to the lower-dimensional space, in-
stead, they produce only the lower-dimensional embedding. This
means they are “black-boxes” that cannot be used in domains
where explainability is paramount. Recently, there has been work
on using genetic programming to perform manifold learning
with functional mappings (represented by tree/s), however, these
methods are limited in their performance compared to UMAP. To
address this, in this work we propose utilising UMAP to create
functional mappings with genetic programming-based manifold
learning. We compare two different approaches: one that uses the
embedding produced by UMAP as the target for the functional
mapping; and the other which directly optimises the UMAP cost
function by using it as the fitness function. Experimental results
reinforce the value of producing a functional mapping and show
promising performance compared to UMAP. Additionally, we
visualise two-dimensional embeddings produced by our technique
compared to UMAP to further analyse the behaviour of each of
the algorithms.

Index Terms—Manifold learning, Genetic Programming, Di-
mensionality Reduction, Feature Construction, Feature Selection.

I. INTRODUCTION

Dimensionality reduction is an important technique for
simplifying data to make it more understandable and easier
to analyse [1]. It is an area that has received a great deal of
interest, especially in recent years. One area that has received
particular attention is nonlinear dimensionality reduction, also
known as manifold learning [2]. Manifold learning algorithms
seek to find an embedded manifold that the data lies on
in the high-dimensional space, that can then be represented
in a lower-dimensional space. While linear dimensionality
reduction techniques rely on finding an embedding in a linearly
transformed subspace [3], manifold learning techniques do not
have this constraint.

Manifold learning techniques can be divided into two
categories: mapping and non-mapping techniques. Mapping
techniques learn a function to map data from the high dimen-
sional space to the low-dimensional space, while non-mapping
techniques simply provide the low-dimensional embedding.

Currently, non-mapping techniques, such as Uniform Manifold
Approximation and Projection (UMAP) [4], are the state-of-art
in terms of embedding quality. However, mapping techniques
produce functions that can be readily applied (reused) on
new data, as well as offering a more transparent way of
understanding the manifold and how it relates to the original
data.

Genetic Programming (GP) is an evolutionary learning
technique in which computer programs are evolved over
generations [5]. GP’s functional structure lends itself well to
be used as a mapping technique for manifold learning, and
there has been some work combining the two [6]. However,
these techniques are still outperformed in embedding quality
by the non-mapping state-of-the-art techniques.

To address the shortcomings of mapping-based manifold
learning techniques, this paper will propose two new GP tech-
niques which incorporate UMAP in their fitness evaluation:
one which will seek to directly reproduce the embedding found
by UMAP, and one which will indirectly replicate UMAP by
directly optimising the UMAP objective function. These two
approaches are indicative of a bigger question in GP: is it
better to try and match a known good output (minimising
error), or to directly optimise the fitness function that achieved
that output? By utilising the power of a proven non-mapping
method to find a functional mapping, we hope to combine the
performance of UMAP with the functional representation of
GP. Specifically, we will:

• Propose two new fitness functions for GP based on
UMAP. The first will directly evaluate the individual
against a precomputed UMAP embedding, and the second
will seek to maximise the UMAP cost directly.

• Evaluate our proposed methods against pure UMAP
through classification performance, as well as compare
their performance to each other.

• Analyse selected two-dimensional visualisations pro-
duced by GP individuals, and compare them to visual-
isations produced directly by UMAP.

• Analyse a selected GP individual to understand the func-
tional mappings produced by our techniques.



II. BACKGROUND

A. Dimensionality Reduction

The dimensionality of a dataset is the number of features
(or attributes) used to represent each instance. However, as
this dimensionality increases, the data becomes more sparse
and less efficient to perform computations over — an instance
of the curse of dimensionality [7]. Hence, there is a need
for techniques that can reduce the dimensionality of the data,
while still maintaining its intrinsic structure. These methods,
known as dimensionality reduction techniques, are used to find
lower-dimensional embeddings of data as a preprocessing step
for more efficient and effective use in other machine learn-
ing algorithms [1]. Another common use for dimensionality
reduction techniques is using them to reduce data to 2 or
3 dimensions for visualisation. Simple techniques use linear
transformations of the data from the high-dimensional to the
low-dimensional space, such as Principal Component Analysis
(PCA) [8] and Linear Discriminant Analysis (LDA) [9].

1) Feature Manipulation: A major paradigm of dimen-
sionality reduction is feature manipulation (FM) [10]. Within
FM, feature selection (FS) chooses w of the features from
the original v-dimensional space to form a subspace; feature
construction (FC), in contrast, constructs w new features by
combining features from the v-dimensional space. There are
three classes of FM techniques: wrapper, filter, and embedded.
Wrapper methods directly use a machine learning algorithm
(e.g. naı̈ve Bayes) to evaluate the quality of a feature set.
Filter methods evaluate the quality of a feature set through
predefined metrics. In the third class, embedded methods, FM
is an intrinsic part of the learning algorithm itself (e.g. decision
tree learning) [11].

There is an inherent trade-off between wrapper and filter
methods. Generally, filter methods are faster as they do not
require the training of a model to evaluate a feature sets
quality as wrapper methods do. However, wrapper methods
are generally better at producing the best feature set for a
specific learning algorithm.

2) Manifold Learning: Reducing the dimensionality of
data through linear transformations is often insufficient for
complex data. Manifold learning, or non-linear dimensionality
reduction, assumes that the data is sampled from a lower-
dimensional manifold in the original space. These techniques
seek to produce an embedding of the data onto this manifold.
Manifold learning algorithms can be divided broadly into two
classes, mapping and non-mapping methods.

The benefits of mapping techniques are their interpretabil-
ity and reusability. The functional mapping itself can be
interpreted to better understand which features and feature
interactions are most important to reducing the dimensionality
of the data, providing more insight into the nature of the data
itself. Additionally, once a functional mapping has been found
for a dataset, additional unseen data from the same domain can
have the functional mapping applied to it without having to
re-run the (often expensive) manifold learning algorithm.

Manifold learning techniques can be seen as a type of
unsupervised filter-based feature construction. Instead of op-
timising the low-dimensional space for a specific machine
learning algorithm, manifold learning instead tries to preserve
the underlying structure of the data.

There are various manifold learning algorithms available,
including the canonical t-Distributed Stochastic Neighbour-
hood Embedding (t-SNE) [12], and a non-linear variant of
PCA [13]. Uniform Manifold Approximation and Projection
(UMAP) is currently considered the state-of-the-art manifold
learning technique [4]. UMAP works by first constructing a
graph-based representation of the data in the high dimension
space, where each edge of the graph corresponds to a prob-
ability that the instances are in the same n-neighbourhood.
A second graph-based representation is then created in the
low-dimensional space that is then optimised to be as similar
to the high-dimensional graph as possible. This produces the
low-dimensional embedding of the data.

B. Genetic Programming

GP is an evolutionary computation technique that represents
solutions to a problem as evolvable computer programs [5]. GP
begins with a population of randomly initialised individuals.
The most common GP representation is a tree-like structure,
where the leaf nodes represent problem-specific values and
ephemeral random constants, while the internal nodes repre-
sent functions that take their children as inputs, producing an
output that propagates up the tree.

The tree-like structure of GP lends itself naturally to
representing interpretable functional mappings for manifold
learning. A GP tree that reduces an instance to a single value
can be thought of as a dimensionality reduction, where the
original data is reduced to a single dimension. Existing work
has used a multitree representation, where each tree represents
a functional mapping of the data in the high-dimensional space
to a single dimension in the low-dimensional space [14]. The
multitree representation provides a straightforward functional
mapping, where the importance of the original features to
the low dimension features have the potential to be easily
understood.

While GP has been used for manifold learning, existing
techniques have relied on ad hoc measures of manifold quality.
We believe that there is clear potential for improvement by
instead using the properties of UMAP to measure the fitness
in GP-based manifold learning. Through this, we expect that
the strengths of the two approaches can be combined.

C. Related Work

There has been a wide range of research into GP for
FC [14], and recent work looking more specifically into GP
for manifold learning [6], [15]. This research has clearly
demonstrated the power of GP for dimensionality reduction.
The strength in GP techniques has been demonstrated to be
its ability to produce interpretable and reusable solutions.
There has been relevant work on using GP specifically for



interpretable visualisation models, which is essentially two-
dimensional manifold learning [16]. The use of GP for various
techniques tangential to manifold learning has also been in-
vestigated, such as for auto-encoding [17] and feature learning
[18].

Some work has been done into adapting UMAP to pro-
duce functional mappings, such as Parametric UMAP [19].
Parametric UMAP uses a deep neural network to learn a
functional mapping between the graphical representation of
the high-dimensional data produced by UMAP and a low-
dimensional embedding. Parametric UMAP has been shown
to perform similarly to UMAP while proving a functional
mapping. However, due to the use of a deep neural network,
this mapping is still very complex with many parameters,
making it difficult to interpret.

III. PROPOSED APPROACHES

We propose two GP approaches for recreating the UMAP
embedding, each using a different fitness function.

A. GP Representation

Both of our proposed methods use the same multitree repre-
sentation, where each tree corresponds to a functional mapping
of the high-dimensional data to a single dimension in the
low-dimensional space. This multi-tree representation is well-
suited to the task of dimensionality reduction. The function set
used contains the standard binary arithmetic operators: +, −,
×, ÷, where ÷ is protected such that any time a division by
zero is attempted, 1 is returned. Additionally, a 5+ operator is
used that takes 5 inputs and returns the sum of all. This is used
to encourage trees with a higher branching factor, as this tends
to produce trees with fewer nodes compared to very deep trees.
The logical operators max, min and if are also used. max
and min simply return the maximum or minimum of their
inputs, respectively, while if takes three inputs: it returns the
second if the first is less than zero, otherwise, it returns the
third input. Finally, two nonlinear unary operators are used:
the sigmoid function and the Rectified Linear Unit (ReLU).
By including nonlinear operators, we allow our individuals to
be able to capture the nonlinear structure of the manifolds.

The terminal set used comprises all the features of the
original data, in addition to ephemeral random constants
— randomly generated values that remain constant through
evolution once initialised.

Our multi-tree approach requires unique crossover and
mutation operators. For crossover, the standard crossover is
applied to each pair of trees between the two selected indi-
viduals. This all-index crossover approach allows certain trees
to specialise within an individual. Mutation is performed by
simply selecting a random tree of the individual to be mutated
and performing standard mutation to it.

An example of a multi-tree individual is provided in
Fig. 1. This individual represents a functional mapping of 10-
dimensional data on a 5-dimensional manifold. Of these trees,
(a) and (c) represent simple feature selection; while the other
trees are more sophisticated functions.

f1 +
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min f6

× ÷

f0 f2 f4 f2

f2 ÷

f8 ÷

f3 f9

-

f7 f3

(a) (b) (c) (d) (e)

Fig. 1: An example of a multi-tree GP individual. This
individual represents a functional mapping of 10-dimensional
data to a 5-dimensional embedding, where each tree represents
a mapping to a single constructed feature in the embedding.

B. UMAP Cost Fitness

Our first proposed GP approach uses the UMAP cost func-
tion as the fitness function in GP. This method seeks to produce
individuals which produce embeddings with the lowest UMAP
cost. Through this technique, we seek to create embeddings
that would be judged as high-quality by the UMAP algorithm.

The UMAP cost of an embedding is calculated in several
steps [4]. First, v, the high-dimensional graph representation,
is calculated:

vij = exp[−(rij − ρi/σi)] (1)

where vij is the probability that an edge exists between
instances i and j. rij are the distances between the instances
in the high-dimensional space (using Euclidean distance).
pi is the distance to the nearest neighbour of i. σi, which
controls the degree of interaction between neighbours, is found
through a binary search such that Σjvij = log2k. v is then
symmetrised in Eq. (2), to ensure that the neighbours are
equally related. As v only concerns the data in the high-
dimensional space (the original data), this only needs to be
calculated once at the start of the evolutionary process.

vsymm = v + vT − v ◦ vT (2)

Given a low-dimensional embedding (i.e. the output of a GP
individual), w is calculated as in Eq. (3). w is similar to v —
it represents the low-dimensional embedding as a graph. wij

represents the probability that an edge exists between instances
i and j in the low-dimensional space. d is the distance between
i and j in the low-dimensional space, and a and b are hyper-
parameters. The UMAP recommended defaults of a = 1.929
and b = 0.7915 are used.

wij = 1/(1 + ad2bij ) (3)



Finally, the dissimilarity between the high- and low-
dimensional spaces is calculated based on v and w. This is
done as in Eq. (4), which provides us with the cost (fitness)
of the embedding.

The UMAP cost (CUMAP ) is always nonnegative, with 0
representing an embedding with perfect retention of structure.
Thus, this cost function should be minimised.

CUMAP =
∑
i 6=j

vij log(
vij
wij

) + (1 − vij) log(
1 − vij
1 − wij

) (4)

C. NRMSE Fitness

Our Normalised Root Mean Square Error (NRMSE) fitness
technique uses a reference UMAP embedding as the target
output for GP. This technique offers an obvious way to produce
a manifold with a functional mapping, as we work backwards
by trying to find a functional mapping for an already existing
(known good) embedding. As this is a simple error calculation,
it is also computationally more efficient than optimising the
UMAP cost as in our first method. Additionally, UMAP only
needs to be run once at the start of the evolution to learn the
embedding we try to reproduce.

The NRMSE fitness works by first using the GP individual
to produce the low-dimensional embedding from the origi-
nal data. The error between this embedding and the low-
dimensional UMAP embedding can then be calculated, first by
calculating the root mean square error (RMSE) as in Eq. (5).

RMSE =

√∑n
i=1(ŷi − yi)2

n
(5)

where yi is the output of the ith GP tree and ŷi is the
corresponding dimension of the UMAP embedding. n is the
number of trees. Finally, the normalised RMSE is calculated
with Eq. (6). We use the normalised form to allow for easier
comparison across different datasets with varied domains.

NRMSE =
RMSE

ymax − ymin
(6)

where ymax and ymin are the maximum and minimum
outputs across the GP individual. NRMSE fitness is always
nonnegative, where a value of 0 indicates that the embedding
produced by the GP individual is identical to the UMAP
embedding.

IV. EXPERIMENT DESIGN

To evaluate the quality of our two proposed methods, we
focus primarily on the classification accuracy that can be at-
tained when using the learned embeddings. If the classification
accuracy achieved using the embeddings produced by our
techniques remains competitive with that of the embeddings
produced by UMAP, we can infer that our embeddings have
retained a similar level of structure from the original dataset.
By evaluating our methods through classification a single time
at the end of the evolution, we avoid any potential bias that
would result from using a measure related to that used by one
of the fitness functions.

TABLE I: GP Parameters

Parameter Setting

Generations 1000
Population Size 1024
Mutation 20%
Crossover 80%
Elitism top 10
Selection Tournament
Min. Tree Depth 2
Max. Tree Depth 8
Tournament Size 7
Pop. Initialisation Half-and-half

TABLE II: Classification Datasets Used

Dataset Instances Features Classes

Breast Cancer 683 9 2
COIL20 1440 1024 20
Dermatology 258 34 6
Ionosphere 351 34 2
MFEAT 2000 649 10
MNIST 2000 748 2
Movement Libras 360 90 15
Segmentation 2310 19 7
Wine 178 13 3

The classification algorithm used for evaluating classifica-
tion performance is the scikit-learn Random Forest implemen-
tation with 100 trees. Random Forest is a reasonably cheap
classification algorithm that performs well across a range of
datasets and is, therefore, a good candidate [20]. 10-fold cross-
validation is used to evaluate the embedding produced by the
final evaluation. For each dataset, 30 runs are performed for
each method to account for stochasticity in the evolutionary
process.

For each method on each dataset, we perform our ex-
periments to a reduction to one, two, three, five, and 10
dimensions. One, two, and three dimensions were selected as
they represent the most extreme reductions in dimensionality.
The two-dimensional case is also easily analysed through
visualisation. Additionally, five and 10 dimension reduction is
also selected to analyse how the methods compare on easier
manifold learning problems.

Standard GP parameters are used as presented in Table I.
The default UMAP parameters are used to generate the UMAP
embedding for NRMSE fitness.

A. Datasets

The selected datasets for the experiments are presented in
Table II. These datasets are mostly real-world datasets from
the UCI Repository. The datasets have been selected as they
represent a range of values in both instances, features and
classes. This allows us to evaluate the robustness of our ap-
proach to a range of real-world data of varying characteristics.
Understanding how our methods perform on high-dimensional
data is especially important, as these datasets are the ones
where dimensionality reduction is most needed.



TABLE III: Classification Accuracy Results

Method Breast. COIL. Derm. Iono. MFEAT. MNIST. Move. Seg. Wine

UCOST1 0.920− 0.244− 0.675− 0.846 0.271− 0.617− 0.339− 0.615− 0.810−
NRMSE1 0.925− 0.213− 0.717− 0.855+ 0.321− 0.885− 0.323− 0.471− 0.885−
UMAP1 0.958 0.844 0.950 0.843 0.969 0.975 0.652 0.814 0.945

UCOST2 0.959− 0.575− 0.870− 0.872+ 0.603− 0.815− 0.513− 0.757− 0.922−
NRMSE2 0.912− 0.453− 0.857− 0.875+ 0.639− 0.905− 0.454− 0.718− 0.925−
UMAP2 0.970 0.897 0.961 0.857 0.980 0.986 0.721 0.844 0.961

UCOST3 0.967− 0.693− 0.923− 0.886+ 0.737− 0.863− 0.619− 0.817− 0.946−
NRMSE3 0.945− 0.605− 0.860− 0.886+ 0.746− 0.918− 0.535− 0.797− 0.931−
UMAP3 0.972 0.910 0.964 0.869 0.981 0.987 0.749 0.852 0.962

UCOST5 0.968− 0.797− 0.948− 0.897+ 0.844− 0.902− 0.706− 0.871+ 0.962
NRMSE5 0.958− 0.718− 0.900− 0.893+ 0.808− 0.917− 0.611− 0.840− 0.912−
UMAP5 0.973 0.922 0.966 0.865 0.982 0.987 0.745 0.857 0.962

UCOST10 0.969− 0.883− 0.954− 0.906+ 0.908− 0.921− 0.757 0.902+ 0.959
NRMSE10 0.967− 0.820− 0.918− 0.903+ 0.831− 0.896− 0.688− 0.887+ 0.904−
UMAP10 0.973 0.929 0.966 0.868 0.981 0.986 0.748 0.855 0.961

B. Evaluation Measures

Our techniques are measured and compared to UMAP using
classification accuracy. Classification accuracy is represented
as a real number in the range [0, 1], such that 1 represents
all instances in a dataset being correctly classified and 0
represents no instances in a dataset being correctly classified.
As such, classification accuracy is a measure we seek to
maximise.

V. RESULTS

The mean classification accuracies from the 30 runs per-
formed of each experiment are presented in Table III. We use
NRMSE to represent the NRMSE fitness approach, UCOST
to represent the UMAP cost fitness approach, and UMAP
to represent the standard UMAP. For each method, we also
indicate the number of dimensions the data is being reduced to:
UMAP1 is UMAP reducing to a single dimension, UCOST2
is UCOST reducing to two dimensions, etc.

A Mann-Whitney significance test was performed with a p-
value of 0.05. The tests were performed across all experiments
between each method and the UMAP baseline, as well as
between each other. A + or − is presented next to a UCOST or
NRSME result if it was found to be statistically better or worse
than UMAP, respectively. Neither sign appearing indicates no
significant difference was found. If either UCOST or NRMSE
performed significantly better than the other on the dataset,
then the mean is presented in bold. If neither are bold, no
significant difference in performance was found.

A. UMAP Cost vs. UMAP

From the results, generally, the UMAP Cost fitness method
is outperformed in classification accuracy by UMAP. However,
there are several datasets where UMAP cost outperforms
UMAP in some dimensions, as discussed below.

The strongest result is in UMAP Cost’s performance on
the Ionosphere dataset. UMAP Cost performed significantly

better than UMAP in all dimensions, except in a single dimen-
sion where no significant difference was found. Additionally,
UMAP Cost outperformed UMAP on the Segmentation dataset
in 5 and 10 dimensions. On the Wine dataset in 5 and
10 dimensions and Movement Libras in 10 dimensions, no
significant difference in classification performance was found.

Even though UMAP cost, in general, has poorer classifi-
cation accuracy than UMAP, the fact that on some datasets
UMAP Cost can outperform UMAP (and on others, come
close) while producing a functional mapping is promising.

B. NRMSE vs. UMAP
As with UMAP Cost, NRMSE is generally outperformed

by UMAP. In all one-, two-, three- and five-dimensional
experiments, NRMSE performs significantly worse except for
the Ionosphere dataset, where NRMSE outperforms UMAP in
all dimensions. In 10 dimensions, NRMSE also outperforms
UMAP on the Segmentation dataset.

As NRMSE is trying to recreate UMAP directly, it is not
surprising that it is generally outperformed. Therefore, the fact
that on certain datasets in certain dimensions NRMSE does
outperform UMAP is interesting to observe, as it suggests that
UMAP is struggling to optimise effectively in some cases. This
result is further analysed through visualisations in Section VI.

C. UMAP Cost vs. NRMSE
Comparing our two GP techniques, we see that when

reducing to a single dimension, NRMSE outperforms UMAP
Cost on five of the nine datasets. On Movement Libras,
Segmentation and COIL20, UMAP Cost outperforms NRMSE,
while there was no significant difference found between the
two techniques on the Ionosphere dataset.

However, as the dimensions of the embedding increase,
NRMSE’s slight performance advantage disappears. When
reducing to two dimensions, NRMSE only outperforms UMAP
Cost on the MFEAT and MNIST datasets.

When reducing to three and five dimensions, the same trend
continues. UMAP Cost is only outperformed on the MNIST



and has better classification accuracy on all other datasets
except Ionosphere and MFEAT.

Finally, when reducing the dimensionality to ten dimen-
sions, UMAP Cost outperforms NRMSE on all datasets except
Breast Cancer, where there is no longer a significant difference
between the performance of the two methods across the
dataset.

Comparing the performance of the two methods, a gen-
eral trend of UMAP Cost’s performance increasing relative
to NRMSE as the dimensions increase is clear. This, in
combination with NRMSE being outperformed more often
by UMAP, indicates that UMAP Cost is, in general, the
superior GP method. This may be as NRMSE is constrained
by trying to directly recreate a UMAP embedding that is not
guaranteed to be easily represented in a depth-limited tree.
UMAP Cost, on the other hand, is indirectly recreating UMAP
by optimising the preservation of the structure in the low-
dimensional space. In this way, GP has more freedom to
discover good embeddings that are viable to represent with
a tree-based mapping.

VI. VISUALISATION ANALYSIS

As visualisation — especially in two dimensions — is
a common use of dimensionality reduction, it is useful to
compare the visualisations produced by our methods and
compare them to each other and those produced by UMAP.
The two-dimensional embeddings with median classification
performance produced by each method for the Dermatology,
MFEAT and Ionosphere datasets are presented in Fig. 2.
Ionosphere is selected for analysis as it is the only dataset
our techniques were able to significantly outperform UMAP
on over a range of dimensions. MFEAT is selected due to its
high dimensionality with 649 features, while Dermatology is
selected as a lower-dimensional dataset, having 34 features,
while still being high enough such that visualisation is valu-
able.

Looking at the Dermatology visualisations in Fig. 2a,
Fig. 2b, and Fig. 2c, we see that the GP methods do not cluster
the data as tightly as the UMAP embeddings. However, both
GP methods are sufficient in capturing the same overall global
structure as UMAP, particularly in the case of NRMSE. In
some ways, this is a limitation of UMAP: it tends to sacrifice
local structure (the relationship within a neighbourhood) to
separate clusters as much as possible. By using a mapping-
based approach, GP is less likely to lose neighbourhood
structure.

The MFEAT visualisations are shown Fig. 2d, Fig. 2e,
and Fig. 2f. Both the GP methods struggle to separate the
classes, resulting in a single large cluster, with classes spread
around the cluster. As with Dermatology, the same general
global structure is captured, only with more overlap and less
separation than UMAP.

The Ionosphere visualisations in Fig. 2g, Fig. 2h, and Fig. 2i
show us an example of visualisations where our GP methods
outperformed UMAP. We can see that UMAP maintains the
denser, more well-separated clusters compared to GP we have

observed in the previous examples. However, these clusters
do not correspond to the class labels to anywhere near the
same degree as in Dermatology and MFEAT. The UMAP
visualisation divides the data into a group of distinct clusters,
two comprised of a mix of yellow and purple labels, one with
yellow labels and a single purple label, and the rest being
comprised solely of yellow labels. Both GP visualisations do
not contain clear clusters, however, they do separate the purple
labels from the yellow in a more consistent way. UCOST
presents a horizontal division at roughly 0.45 on the y-axis,
with all purple labels being below this line. While there are
still yellow labels grouped with purple labels, the majority are
above 0.45. NRMSE presents the data in a slightly different
way. All purple labels are grouped at 0.0 on the x-axis while
varying along the y-axis. Again, some yellow labels are mixed
in with the purple labels, however, the majority are clearly
separated.

Our analysis of the visualisations indicates that generally,
UMAP is superior at finding a manifold that captures the
structure of the high-dimensional data in two-dimensional
space. However, in the case of Ionosphere, UMAP seems to
also find structure where it doesn’t exist, leading to inferior
classification results compared to the GP methods.

VII. EVOLVED INDIVIDUAL ANALYSIS

As the utility of mapping-based manifold learning tech-
niques is the ability to interpret the mapping from the high-
dimensional space to the lower one, it is useful to look at
what an evolved individual looks like. An example of an
evolved individual is presented in Fig. 3. This is the smallest
individual produced from the 30 experiments performed on the
Ionosphere dataset using the NRSME GP method with a single
dimension. This individual is comprised of 127 nodes and
uses 27 of the original 34 features. It achieved a classification
performance of 0.863 — the mean of 0.855.

Analysing the tree, we can see that the non-linear ReLU
function is used four times. Each of these times, the input
comes directly from a feature node — f29, f32, and f12,
which occurs twice. The use of ReLU in the individual
indicates some non-linear relationship between the features in
the original space and on the manifold, especially in f12.

Even though the tree is quite large, and therefore represents
a fairly complex mathematical function, it is promising to pro-
duce an interpretable functional mapping that can outperform
UMAP. For example, from this individual, we can determine
the features of the original data that are or are not important
for the reduction in dimensionality by whether or not they
have been included. Future efforts to incorporate parsimony
pressure or other such bloat reduction techniques would likely
create even more interpretable mappings.

VIII. CONCLUSION

This work presented two new GP approaches to manifold
learning that incorporate components of the current state-of-
the-art UMAP method. By using GP, we can perform mapping-
based manifold learning, while utilising the performance of
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Fig. 2: Visualisations produced by the GP methods and UMAP on the Dermatology, MFEAT and Ionosphere datasets. The
median result of each was chosen for visualisation.
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Fig. 3: A single dimension individual for the Ionosphere dataset. This individual presents an example of a single constructed
feature that outperforms UMAP.



UMAP which is a non-mapping method. The first approach,
NRMSE, sought to directly reproduce a UMAP embedding
by evaluating the error of the GP-produced embedding against
that of one produced by UMAP. The second approach, UMAP
Cost, indirectly found an embedding by optimising the UMAP
cost function. We evaluated the performance of one, two, three,
five, and 10 dimension embeddings produced by these methods
across nine datasets of varying characteristics. We compared
these embeddings to each other, as well as to embeddings
produced by UMAP as a baseline.

We have found that generally, the classification performance
of embeddings produced by our methods are poorer than
those produced by UMAP. This was not surprising, as some
performance loss should be expected when trying to mimic
a high-performance, non-mapping technique such as UMAP.
Considering that the GP methods provide a functional map-
ping, they are a promising candidate for further work in using
UMAP itself to find embeddings that are more transparent.

In comparing our two GP methods, we found that overall,
UMAP Cost tended to perform better in terms of classification
accuracy, especially on higher dimension embeddings. UMAP
Cost also outperformed UMAP on more experiments than
NRMSE. This led us to conclude that UMAP was generally
the more effective of our two proposed techniques. This is
likely because UMAP Cost is less constrained in its optimisa-
tion, optimising the embedding directly rather than trying to
indirectly recreate a specific UMAP embedding.

The two-dimensional visualisations produced by our meth-
ods were compared to each other and those produced by
UMAP. It was found that while UMAP was superior in
producing dense, well-separated clusters, the GP methods were
able to capture the same general global structure. Addition-
ally, analysis of the visualisations on the Ionosphere dataset
provided more context on the GP methods’ superior perfor-
mance. A trade-off between the GP techniques and UMAP
was observed, with GP having less defined visualisations
while providing a functional mapping to better understand
the learned manifold. Further analysis of a relatively small
evolved individual on the Ionosphere dataset reinforced the
potential for GP to perform interpretable manifold learning
by properties of the UMAP algorithm.

A. Further Work

This work represents an initial exploration into using UMAP
to complement GP for manifold learning. As such, there
is plenty of further work than can be explored. While the
strengths of the proposed approaches lie in the functional
mappings associated with their low-dimensional embedding,
no bloat control techniques beyond depth limiting have yet
been used to help keep the functional mappings smaller and
thus more interpretable. Further work could look into incorpo-
rating techniques such as parsimony pressure to produce more
interpretable trees.
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