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Abstract—Clustering, an important unsupervised learning
task, is very challenging on high-dimensional data, since the
generated clusters can be significantly less meaningful as the
number of features increases. Feature selection and/or feature
weighting can address this issue by selecting and weighting only
informative features. These techniques have been extensively
studied in supervised learning, e.g. classification, but they are
very difficult to use with clustering due to the lack of effective
similarity/distance and validation measures. This paper utilises
the powerful global search ability of particle swarm optimisation
(PSO) on continuous problems, to propose a PSO based method
for simultaneous feature selection and feature weighting for
clustering on high-dimensional data, where a new validation
measure is also proposed as the fitness function of the PSO
method. Experiments on datasets with varying dimensionalities
and different number of known clusters show that the proposed
method can successfully improve clustering performance of
different types of clustering algorithms over using the baseline
of the original feature set.

I. INTRODUCTION

Clustering is one of the most fundamental unsupervised
tasks in machine learning and data mining, and can be
described as the task of partitioning a dataset into groups,
such that objects/examples within the same group are related
or similar, and objects of different groups are comparatively
unrelated [1]–[3]. However, there is no strict agreement as to
what it formally means for examples to be related or similar.
This particular difficulty has been summarised aptly by Backer
and Jain [1], who stated that “interesting” clusters are often
created based on a subjectively chosen measure of similarity.

A measure designed to evaluate a cluster partitioning is
named a validation measure, and the ambiguity in what it
means for a partitioning to be good in clustering has led to the
proposal of many cluster validation measures in the literature
[4], [5]. Some examples of such validation measures include:
compactness [5], which measures of how close together the
data points within clusters are; and separation [5], which
measures how far away different clusters are from each other.
Most commonly used measures are distance based measures,
but without careful design, they may lead to trivial or naive
solutions, and distance in a high-dimensional space might be
meaningless. Because of the inherent subjectivity of what it
means for a partitioning of data to be good, and the abundance
of existing validation measures, finding a suitable validation
measure for a given clustering algorithm on particular datasets
is very challenging.

A further complication when performing clustering relates
to the dimensionality of data, i.e. having a large number of
features. High dimensionality can significantly reduce the abil-
ity of clustering algorithms to find meaningful relationships,
through a number of characteristics known collectively as
“the Curse of Dimensionality” [6], [7]. Thus, for many high-
dimensional applications of clustering, dimensionality reduc-
tion techniques are required in conjunction with a clustering
algorithm in order to address these issues [8]. A key di-
mensionality reduction method is feature selection [9], which
attempts to find a subset of the original features, which give
improves or similar results with better interpretability than the
case when the full feature set is used. However, the search
space of feature selection for a dataset with dimensionality
d is 2d. This large search space means that frequently feature
selection methods need to utilise some form of heuristic search
throughout the space. Many existing methods fail to find
optimal or near-optimal solutions, which requires a powerful
global search method.

Asides from the large number of features, the relative
importance of different features is another key factor, which
can be achieved by feature weighting, where more important
features should be weighted more heavily than less important
features. However, there are interactions between features,
i.e. features can not be considered individually, which makes
both feature selection and feature weighting challenging.
Specifically, feature selection needs to have an appropriate
optimisation measure together with a powerful global search
method, to find a subset of complimentary features. Feature
weighting needs to optimise weights (continuous values) of all
features simultaneously, which requires a powerful continuous
optimisation method. Particle swarm optimisation (PSO) [10]
is such a method, and is perhaps the most used evolutionary
computation (EC) method in clustering and has shown success
in recent years [11], [12]. Furthermore, PSO has also been
used for feature selection or feature weighting, mostly in
classification [13], but its potential in simultaneous feature
selection and weighting in clustering has not been investigated.

Goals: This research aims to address issues that arise
in clustering high-dimensional datasets by developing a new
effective measure and then a simultaneous feature selection
and weighting approach using PSO, with the expectation of
improving the interpretability and quality of resulting clusters
and providing insight as to how important different features
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are to the dataset as a whole. The selected and weighted
features will be used with a variety of different clustering
algorithms, specifically aiming to improve statistical measures
of the correctness of the returned clusters while using only a
subset of the features. The specific goals are to:

1) Create a novel optimisation criterion as the fitness func-
tion to guide the search of PSO,

2) Develop a novel PSO method for simultaneous feature
selection and weighting in clustering, and

3) Investigate the generality of the novel algorithm and
optimisation criterion by applying them to several differ-
ent types of clustering algorithms over several datasets,
and to test whether they can achieve better clustering
performance while using fewer number of features.

II. BACKGROUND

A. Particle Swarm Optimisation

Particle Swarm Optimisation [10] (PSO) is swarm based
EC method, where each candidate solution in the swarm
is denoted as a particle and represented by a vector. A
random d-dimensional particle xi ∈ Rd has a velocity vi ∈
[−vmax, vmax], where vmax is a user specified maximum
velocity. Throughout the algorithm each particle maintains a
record of its previous best position pbest and has access to the
recorded global best position gbest. Each iteration of the PSO
algorithm performs the following updates, given user specified
inertia weight ω, acceleration coefficient for pbest and gbest,
denoted as c1 and c2, respectively, and a function r which
returns a uniform random value in [0, 1]:
vt+1
i = ωvti + r1c1(pbesti − xti) + r2c2(gbesti − xti) (1)

xt+1
i = xti + vt+1

i (2)

PSO searches for the optimal solution(s) by iteratively up-
dating the position, velocity, pbest and gbest until a predefined
termination criterion has been met, then gbest is returned as
the final solution.

B. The Curse of Dimensionality

The Curse of Dimensionality is a term applied to group
of problems that arise when working with high-dimensional
data. One aspect of the Curse of Dimensionality defined with
respect to distance metrics in high-dimensional spaces has
been formalised by Beyer et al. [6] which is the aspect of the
Curse of Dimensionality which this research hopes to address.

The formalisation of this property put forward by Beyer et
al. [6] hinges on the following observation, which was proven
in the original work: for many distributions of dimension d,
given an arbitrary point in the dataset x and finding a point y
which satisfies argmaxy(dist(x, y)) and a point z which sat-
isfies argminz(dist(x, z)), the limd→∞

dist(x,y)−dist(x,z)
dist(x,z) →

0. This is to say, while all distances tend towards infinity as
dimensionality tends to infinity, the maximum and minimum
distances between all points tend towards equidistance. Strong
evidence of this behaviour was found at a dimensionality of
only d = 10 for many synthetic and real-world datasets.

This causes a problem in the context of clustering because
it implies that distance functions cease to provide meaningful
insight about how related two datapoints actually are in
clustering problems given sufficient dimensionality. Research
has supported this implication, showing that this aspect of the
Curse of Dimensionality significantly impacts the effectiveness
of clustering algorithms [14].

C. Clustering Algorithms
Fahad et al. [2] propose a taxonomy for clustering algo-

rithms consisting of the following five overall types: parti-
tioning based, hierarchical based, density based, grid based,
and model based. We will consider several typical methods to
investigate the generality of the proposed method (i.e. Goal 3).
Grid based and model based methods are statistical clustering
techniques [2], and thus are not applicable to this research,
since a key motivation is addressing issues relating to distance
on high-dimensional datasets. Therefore, we propose the use
of four algorithms, one from each type: the partitioning based
Affinity Propagation [15], the hierarchical based Complete
linkage agglomerative clustering [16], density based Spatial
Clustering of Applications with Noise (DBSCAN) [17], and
the graph based KNN-neighbour clustering for additional
comparisons [18].

Affinity Propagation [15] is a medoid based clustering
algorithm and finds clusters based on similarity between
datapoints, rather than distance, but the convention of using
negative squared Euclidean distance as similarity is well
established, making this a suitable algorithm for this research.

Given a similarity matrix S, the general process is:
1) Two square matrices R and A are initialised to arrays of

zeros, where Rx,y indicates how appropriate datapoint x
is to act as a medoid for datapoint y, and Ax,y indicates
how appropriate it is for datapoint x to pick y as a medoid
considering the appropriateness of y as a medoid for other
datapoints,

2) Until a convergence criterion is met, for each iteration
and all pairwise combinations of datapoints the following
updates take place:

a) Rx,y ← Sx,y −maxz 6=x{Ax,z + Sx,z}
b) Ax,x ←

∑
y 6=xmax(0, r(x, y))

c) For Ax,y where x 6= y, Ax,y ← min(0, r(y, y) +∑
z/∈{x,y}max(0, Rz,y))

3) Finally, medoids are extracted from the matrices R and
A, where a datapoint x is considered a medoid where
Rx,x+Ax,x > 0, and datapoints are assigned to a cluster
corresponding to their nearest medoid.

The significance of the term Rx,x + Ax,x > 0 is that it
indicates that it is sufficiently appropriate for a datapoint x to
act as a medoid for itself, and sufficiently appropriate for x to
assign itself to a cluster for which it is the medoid. Affinity
Propagation has improved clustering outcomes relative to k-
means on several complicated datasets [15].

DBSCAN [17] is a popular density based algorithm, which
can find arbitrarily shaped clusters of relatively uniform den-
sity given a user specified ε ∈ R+, minNeighbours ∈ N.



Specifically using a notion of core points, which are datapoints
with at least minNeighbours datapoints within ε distance of
them, the following method is used:

1) All datapoints within ε of a core point are said to be
directly reachable from that core point,

2) Any datapoint which is directly reachable from a core
point is said to be in the same cluster as that core point,
and

3) Any datapoint which is not within ε distance of a core
point is said to be an outlier, and is not treated as
belonging to any cluster.

DBSCAN is unique among the algorithms presented here
for the final property that datapoints can remain unlabelled,
which requires special consideration in the context of the
validation measures. Specifically, with regards to the F-Score,
datapoints designated as outliers by DBSCAN contribute to
the false negative count, but not the false positive count.

Agglomerative clustering methods [16] perform the follow-
ing steps for a given number of clusters, K ∈ N:

1) At the start of the algorithm each datapoint is treated as
a singleton cluster, and

2) Clusters are gradually merged according to some criteria
until the number of clusters is K.

The specific criterion used in this work is complete linkage,
whereby the clusters merged at each step are those with
the least maximum distance between all datapoints in the
clusters. Agglomerative clustering using this criterion can find
arbitrarily shaped clusters, but is highly reliant on a priori
knowledge regarding the true number of clusters.

KNN-Clustering [18] is a graph based clustering algorithm
which performs the following steps given a user specified K ∈
N [18]:

1) Each point is connected to the K points which are closest
to it, according to some distance metric, via an undirected
edge, and

2) Clusters are then created by assigning points to clusters
such that for each two points if a path exists between
them then they are assigned to the same cluster.

For the datasets used in this research a value of 3 for the
parameter K was found to create the best clusters according
to the validation measures used, and so the 3NN clustering
algorithm acts as the graph based clustering algorithm for this
research.

D. Feature Selection and Feature Weighting in Clustering

There have been some work on feature selection in cluster-
ing, which are not reviewed in detail due to the page limit;
interested readers are referred to [19]. One such work by
Dy and Brodley [20] utilises an external validation measure,
which does not penalise for finding too many clusters. The
work failed to improve external validity of partitionings when
dimensionality was greater than 2, the statistical internal vali-
dation measure cannot improve external validation in any tests,
and the synthetic datasets chosen are very simple, being both
hyperspherical and of low dimensionality. EC based methods

have been used for feature selection in clustering, such as PSO
is used to estimate the number of clusters, select features, and
perform clustering in [21], and a memetic algorithm with nich-
ing is used for simultaneous feature selection and clustering
in [8]. Existing work has shown the potential benefit of using
EC for feature selection in clustering, but compared with the
extensive research in supervised learning, e.g. classification,
the potential of EC for feature selection in clustering is still
yet to be investigated.

Compared with feature selection, there has not much work
done in feature weighting in clustering. One example is that
Modha and Spangler [22] examined feature weighting in k-
means clustering based on information theory criteria with
regards to the clusters, but the method was tested on a number
of datasets with dimensionality less than three. The results
show that in all cases, the weighting improved the internal
validation measures, finding better quality clusters for all
specified k. However, it is unclear whether such conclusions
can be carried to higher dimensions.

Existing work on feature selection in clustering has shown
the benefit of feature selection or feature weighting, but there
is limited work on using EC, especially PSO, to achieve these
tasks. Therefore, it is still an open issue to use PSO for feature
selection and weighting in clustering.

III. THE PROPOSED ALGORITHM

Our proposed algorithm is denoted Particle Swarm Optimi-
sation for Feature Selection and Weighting (PSO-FSW).

A. PSO Representation

The dimensionality of each particle in PSO-FSW is equal to
the dimensionality of the dataset, with each dimension of the
particle corresponding to a dimension/feature in the dataset.
In order to allow both feature selection and feature weighting,
the following interpretation of each dimension in the particle
is proposed:

interpretationd =

{
particled , where particled > 0

0 , otherwise

This interpretation of the particle is then utilised when
calculating the pairwise distance between datapoints in the
dataset. The formed distance function is shown by Equation
(3), where d is the dimensionality of the dataset, x and y are
datapoints, and ci = interpretationi, i ∈ {1, ..., d}:

dist(x, y) =

√√√√ d∑
i=1

(ci ∗ (xi − yi))2 (3)

Thus where particlei ≤ 0, this interpretation is equivalent
to removing the feature indexed at i from the dataset to per-
form feature selection. Where particlei > 0 this interpretation
is equivalent to weighting the feature indexed at i by the value
of particlei. Further, as distance functions are symmetric
around 0 for each ci, this method does not remove any unique
solutions to the problem. That is, the distance between two



points is the same where ci = −ci, so by setting negative
values to 0 we maintain all possible feature weightings. We
note as a point of interest that this interpretation is equivalent
under certain assumptions to a rectified linear unit [23], as
commonly used in artificial neural networks.

B. Fitness Function

In PSO-FSW, each particle is firstly decoded to the vector
c, then a distance based clustering method is used to perform
clustering, with all pairwise distance between datapoints being
calculated using the distance function shown by Equation (3).
The performance of the resulting cluster partition is used as the
fitness value of each particle. This also means that PSO-FSW
is a wrapper feature selection and weighting method, which
can wrap any distance based clustering method for evaluating
the fitness of each particle.

A new validation measure, forming a new fitness function, is
proposed to evaluate the performance of the created partition.
Two well-known measures, Silhouette [24] and connectedness,
[5] are utilised to form the new fitness function:

• The Silhouette [24] of a given datapoint is calculated
as sil(i) = b(i)−a(i)

max(a(i),b(i)) , where a(i) is the average
distance between the datapoint i and all other datapoints
in the same cluster, and b(i) finds, for each other cluster,
the average distance between the datapoint i and all
datapoints within that cluster, returning the minimum
of these values. The Silhouette for a set of clusters is
considered to be the mean of Silhouettes of all datapoints,
reflecting on average how close datapoints tend to be to
other datapoints within their cluster and how far away
datapoints tend to be from datapoints in the closest
neighbouring cluster. The range of values possible for this
measure are [−1, 1] where higher values indicate better
clusters.

• The connectedness [5] of a given datapoint i in cluster
C is defined by

conn(i) =

n∑
k=1

{
min( 1

dist(i,k) ,m) if k ∈ C
−min( 1

dist(i,k) ,m) if k /∈ C

with its n closest neighbours and a specified maximum
absolute distance m that provides a practical limit on
these values such that no distance can dominate the
overall sum. The connectedness assigns a high positive
value to i if its closest neighbours are from the same
cluster, and a high negative value if its closest neighbours
are from different clusters.
The connectedness of a set of clusters is the mean
connectedness of all datapoints. The possible values for
this measure are [−m ∗ n,m ∗ n], with higher values
indicating a more appropriate partitioning on a local level.
For this work parameters n = 5 and m = 10 were found
to be suitable, giving outputs in the range [−50, 50].

The fitness function is shown in Equation (4), named the
Combined Silhouette and connectedness (CSC), which is a

Algorithm 1: Pseudo-code of PSO-FSW

1 begin
2 randomly initialise particles and velocities in the

swarm;
3 while the termination criterion is not met do
4 for each particle do
5 decode particle to a pairwise distance

function dist, i.e. Equation (3);
6 produce clusters using the predefined

clustering algorithm and dist;
7 evaluate the fitness value of particle using

Equation (4);
8 end
9 for each particle do

10 update pbest and gbest;
11 update velocity according to Equation (1);
12 update position according to Equation (2);
13 end
14 end
15 create a pairwise distance function dist from gbest ;
16 form clusters using the predefined clustering

algorithm and dist;
17 calculate the F-Score of clusters
18 return gbest and the resulting F-Score;
19 end

modified product of the Silhouette measure and the connect-
edness measure, such that when both of them are negative,
the product is still negative. This is to say that, given the
Silhouette measure for a clustering Sil and the connectedness
for a clustering Conn the combined validation measure is
then:

CSC =

{
|Sil ∗ Conn| if (Sil > 0) ∧ (Conn > 0)

−|Sil ∗ Conn| if (Sil < 0) ∨ (Conn < 0)
(4)

Equation (4) seeks to maximise both the Silhouette and the
connectedness measures. The Silhouette measure is calculated
using the weighted feature subset, so that the broader cluster
qualities are optimised. Connectedness, however, uses the
full unweighted feature set, so that the local neighbourhood
around data instances remains sensible with regards to the
original topology of the dataset. The design or maximisation
of Equation (4) is to ensure that values are treated as optimal
when clusters are maximally compact relative to the separation
between clusters (from the Silhouette measure), but also
locally dense (from connectedness).

C. Overall Algorithm

The pseudo-code of PSO-FSW is described in Algorithm
1. The evolutionary process finishes in Line 14. Line 15 to
17 show the final evaluation of the best evolved solution,
i.e. the final gbest, after the evolutionary process stops. The
clusters generated by the predefined clustering algorithm using
the selected and weighted feature subset by gbest is evaluated
using the F-Score external validation measure.



TABLE I
CHARACTERISTICS OF DATASETS.

D K Sil. Conn. n Min. Cluster Size Max. Cluster Size

2 4 0.59 17.56 219 25 78
2 10 0.42 15.98 632 15 122
50 4 0.34 29.84 246 14 90
50 10 0.39 28.90 805 34 124
100 4 0.41 31.51 254 32 93
100 10 0.41 29.80 747 34 103

Note: D represents Dimensionality of the dataset.

IV. EXPERIMENT DESIGN

A number of experiments have been conducted to evaluate
the performance of PSO-FSW against the baseline of using all
features. The four clustering methods described in Section II-
C, i.e. Affinity Propagation, DBSCAN, Agglomerative, and
KNN-Clustering, are each used as the wrapped clustering
algorithm with PSO-FSW. The popular F-Score is used to
evaluate the resulted clusters after the evolutionary process.
The unpaired Wilcoxon test is used to evaluate the statistical
significance of the differences in performance.

A. Dataset Selection

The choice of datasets for this research is based primarily
on two criteria. The first criterion is that the chosen datasets
should be non-trivial, such that standard clustering algorithms
are unable to reliably discern the base truth from the dataset.
To facilitate this non-axis aligned, non-hyperspherical datasets
of arbitrary orientation are desired. The second criterion is that
the datasets chosen should have established use in the wider
clustering literature, to improve confidence in results.

While in low dimensions, datasets generated using Gaussian
distributions with high covariance can create clusters which
satisfy our first criterion, the requirement that datasets be non-
spherical tends to fail for Gaussian distributions at sufficient
dimensionalities [25]. In particular clusters generated in this
way tend to be hyperspherical because high variance in any
single direction tends to have negligible effect on distance
when there are very many dimensions [25].

The current research thus uses ellipsoid datasets generated
through a method put forward by Handl and Knowles [25],
which uses a genetic algorithm (GA) combined with statistical
data generation to overcome this problem. Further, datasets
generated using this method are widely used and cited in the
literature [26], [27], satisfying our second criterion.

1) Dataset Characteristics: The data generation method in
[25] tends to generate ellipsoid clusters which are non-axis
aligned and of arbitrary orientation. Further, while the resulting
dataset is arranged compactly, clusters still tend to be separable
from other clusters in the dataset. Some notable characteristics
of the datasets selected for the current work can be found in
Table I, which also includes the Silhouette and connectedness
scores under perfect partitioning (according to the base truth).

It is found that all datasets contain clusters which, on
average, have higher inter-cluster distance than intra-cluster
distance with respect to the base truth, as shown by a positive
Silhouette value for all datasets. We also note that cluster size

(a) (b) (c)

Fig. 1. Properties of Axes in First Cluster.

(a) (b) (c)
Fig. 2. Properties of Axes in Second Cluster.

varies greatly within datasets, with the largest cluster being
several times larger than the smallest cluster in all datasets.
Although the Silhouette value is positive for each dataset, these
properties indicate that the datasets are not easy to cluster
correctly.

2) Dataset Analysis: To demonstrate further characteristics
of the datasets, the distribution of datapoints within clusters
are analysed along different axes. Namely, from the dataset
containing 100 dimensions and 4 clusters, 2 clusters are used
for examination. For these two clusters the minimum, median,
and maximum variance, and the distribution of datapoints
along them are plotted in Figs 1 and 2.

These plots show that while most axes appear to be
Gaussian distributed with a random mean and variance, as
the variance increases the rejection criteria in the cluster
generation can make some high variance axes more uniformly
distributed. Further, where the randomly chosen major axis
happens to be strongly aligned with a specific axis, that axis
is entirely uniformly distributed.

B. External Validation Measure

The F-Score [28] of a cluster is defined as the square root
of the product of precision and recall. These are defined as the
standard way, as shown in Equations (5), (6), and (7). Specif-
ically, in clustering, pairwise comparisons are made between
every point in the dataset in order to find the number of True
Positives (TP), False Positives (FP), and False Negatives (FN).
For each pairwise comparison a TP is when two datapoints
share a label and are also in the same cluster, a FP is when
two datapoints are within the same cluster but do not share
the same label, and a FN is when two datapoints share a label
but are not in the same cluster [29].

Precision =
#TP

#TP +#FP
(5)

Recall =
#TP

#TP +#FN
(6)

F =
√
Precision×Recall (7)



C. Structure of Experiments

For the four clustering algorithms, 30 independent trials
were performed for each of the following two cases:

1) Baseline using the relevant algorithm with Euclidean
distance on the original full feature set; and

2) PSO-FSW generating a final partitioning through PSO-
FSW using the novel distance based internal validation
measure CSC as the optimisation criterion.

For each clustering algorithm results were compared be-
tween the PSO-FSW trial and the baseline using an unpaired
Wilcoxon test.

D. Parameter Settings

There are a number of parameters in the proposed PSO-
FSW and the clustering methods in the experiments, which
are listed below. No parameters needed to be set for Agglom-
erative and Affinity Propagation.

PSO-FSW: The parameters selected for the PSO algorithm
are the ones suggested in [30]. Specifically they are: weight
decay, ω = 0.73; weights of best local and global positions,
c1 = c2 = 1.5; maximum velocity, vmax = 1.0; the initial
distribution for velocity and position is uniform in [−2, 2]; the
swarm size is 20; and the termination criterion is 30 iterations,
or if there is no improvement in gbest for 5 iterations.

DBSCAN: The optimal value for the epsilon parameter was
found empirically by performing a linear search over values
of epsilon on datasets also generated using the method put
forward by Handl and Knowles [25], which hold the same
dimensionalities and numbers of clusters, but were not the
same datasets as used in final tests. This search found the
following optimal values for the Euclidean case by dimension-
ality: dimensionality 2, ε = 0.4; dimensionality 50, ε = 0.3;
dimensionality 100, ε = 0.3. The minimum samples parameter
is set to 5 after a similar process.

KNN-Clustering: The value for K is fixed at 3 based on
empirical trials on datasets also generated using the method
put forward by Handl and Knowles [25].

V. RESULTS AND DISCUSSIONS

The mean F-score of the experiments and the baseline
(using all features) are shown in Table II. The p-value of the
Wilcoxon test performed between the baseline and experiment
result is also provided. Table IV shows the mean ratio of
features used by PSO-FW on each clustering algorithm and
number of dimensions. Fig. 3 shows the F-Scores achieved
by the proposed PSO-FSW method with the clustering meth-
ods, with all features, different dimensionality, and different
number of clusters. Results for further investigation of having
different clustering methods within PSO-FSW are shown in
Tables V and VI.

A. Overall Results

Overall, the results of PSO-FSW show significant improve-
ment in F-Score and Silhouette over all respective baselines,
as shown in Fig. 3(a), Table II, and Table III. The performance
will be further discussed in terms of the number of features

TABLE II
MEAN F-SCORE BY ALGORITHM.

Baseline PSO-FSW P-Value

Affinity Prop. 0.577 0.638(+) 1.62× 10−28

KNN-Clustering 0.844 0.930(+) 1.90× 10−23

DBSCAN 0.795 0.816(+) 6.42× 10−08

Agglomerative 0.539 0.697(+) 2.67× 10−30

TABLE III
MEAN SILHOUETTE BY ALGORITHM.

Baseline PSO-FSW P-Value

Affinity Prop. 0.365 0.381(+) 1.66× 10−16

KNN-Clustering 0.300 0.413(+) 2.30× 10−31

DBSCAN 0.268 0.374(+) 1.77× 10−28

Agglomerative 0.418 0.443(+) 1.98× 105

Note: Affinity Propagation had undefined baseline Silhouette due to
singleton clusters on all two dimensional datasets. Thus these datasets were

not included for Affinity Propagation in this table.

selected, the dimensionality, and the number of clusters. The
Silhouette values shown above are calculated using the full-
unweighted feature set, thus the novel algorithm was not
explicitly optimising for this value.

Fig. 3(a) shows that PSO-FSW improved the performance
of all the four clustering methods using all features. This can
be confirmed by the significantly higher F-Score values as
shown in Table II (where “+” means PSO-FSW is significantly
better than the baseline) especially for KNN-Clustering and
Agglomerative. There are also outliers with low F-Score,
especially when using DBSCAN with the weighted feature
subset from PSO-FSW, although overall it is significantly
improved from the baseline. This will be investigated in the
future. By looking at Table IV, which shows the mean ratio of
features selected and weighted by PSO-FSW, it can be seen
that the number of features have been significantly reduced,
making the clusters more interpretable. Especially for high-
dimensional datasets with dimensionality of 50 and 100, where
on average approximately half of the original features are
selected and weighted, but still leads to better performance.

Figs. 3(b-d) show the results on datasets with different
dimensionalities, i.e. 2, 50 and 100. It can be observed that
the improvement is relatively consistent across dimensionali-
ties, with the exception of DBSCAN on the 50 dimensional
datasets. It can be found that PSO-FSW appears to lead to
some low F-Score outliers when used with 3NN-Clustering

TABLE IV
MEAN RATIO OF FEATURES USED.

D = 2 D = 50 D = 100

Affinity Propagation 0.983 0.508 0.495
KNN-Clustering 1.0 0.511 0.487
DBSCAN 1.0 0.524 0.524
Agglomerative 1.0 0.490 0.492



(a) All F-Scores by clustering algorithm (b) Datasets of Dimensionality 2 (c) Datasets of Dimensionality 50

(d) Datasets of Dimensionality 100 (e) Datasets with 4 Clusters (f) Datasets with 10 Clusters

Fig. 3. F-Scores with all features, different dimensionality, and different number of clusters.

and DBSCAN, where the dimensionality of datasets is greater
than 2.

Figs. 3(e-f) shows the results on datasets with different
number of clusters, i.e. 4 and 10. It is also important to note
the interaction between the number of clusters present in a
dataset and the effectiveness of the novel technique. It can
be seen that the improvement in F-Score overall seems more
pronounced with a smaller number of clusters. However the
improvement is still evident when the number of clusters is
10.

B. Further Analysis

PSO-FSW improved the results over the baseline of using
the original feature set in most cases, but there were still
outliers with poor clustering solutions. The analysis in this sec-
tion is primarily focused on explaining why these behaviours
occurred, as well as showing the specific characteristics of
some final partitionings. DBSCAN is used here as an example
since outliers are observed when DBSCAN was used with
PSO-FSW for the dataset with 50 dimensions and 10 clusters.

The overall results for this analysis are presented in Table
V, where D indicates the dimensionality, Kreal represents the
actual number of clusters used when generating the dataset,
µbase and µtest shows the average value of F-Scores when
using the baseline of all features and the feature subset
produces by PSO-FSW, σtest shows the standard deviation,
p-value is generated from the Wilcoxon test, and Kbase and
Ktest denote the number of clusters generated by DBSCAN
when using the baseline of all features and the feature subset
produces by PSO-FSW.

TABLE V
RESULTS OF PSO-FSW WHEN USED WITH DBSCAN.

D Kreal µbase µtest σtest p-value Kbase Ktest

2 4 0.72 0.89(+) 0.042 2.9e-11 7.0 3.0
2 10 0.87 0.95(+) 0.014 2.9e-11 11.0 10.13
50 4 0.70 0.77(+) 0.097 0.004 5.0 4.5
50 10 0.87 0.57(-) 0.25 1.0e-07 14.0 8.6
100 4 0.78 0.83(=) 0.11 0.076 6.0 5.7
100 10 0.82 0.89(+) 0.037 8.1e-09 15.0 11.13

Table V shows that PSO-FSW significantly improved the
performance in most cases, indicated by “+”. There is only
one worse case indicated by “-”, where the standard deviation
σtest is very big, suggesting there are poor outliers generated.
The results also show that the number of clusters generated
by PSO-FSW, Ktest, is closer to the actual number of clusters
Kreal than that of using the baseline of all features, Kbase.

It is also important to determine whether the PSO algorithm
is unable to find good optima, or whether good optima are
found corresponding to poor solutions. Therefore, we further
investigate individual solutions to confirm this point. Two
solutions, one with a high F-Score and one with a low F-
Score on the dataset with 50 dimensions and 10 clusters are
used as examples, to compare the fitness values, i.e. the CSC
scores for these resulting solutions. The results are presented
in Table VI.

The results in Table VI show that PSO-FSW is finding a
better solution but achieving a worse F-Score. This indicates
that the poor solutions represent something approaching a triv-
ial solution, rather than insufficient optimisation. It is further



TABLE VI
COMPARISON OF INDIVIDUAL SOLUTIONS

F-Score CSC K Selected Features (%)

Good Solution 0.919 9.60 12 50%
Poor Solution 0.327 11.30 5 46%

noted that both of the lowest base-truth Silhouette results
occur on the 50 dimensional dataset with 10 clusters, but
that this behaviour not seen frequently for the 50 dimensional
dataset with 4 clusters. It seems this result is an interaction
between a higher number of cluster and a dataset for which
the base-truth Silhouette is low relative to the 100 dimensional
cases. It’s clear that the novel algorithm, which is designed to
address problems on high-dimensional data, is not failing to
improve results when paired with DBSCAN as dimensionality
increases. The evidence for this is that on the 100 dimensional
dataset on which it actually does better.

VI. CONCLUSIONS

This paper aimed to propose a new PSO based method to
achieve simultaneous feature selection and feature weighting
for high-dimensional clustering problems. This goal has been
successfully achieved by developing a new particle represen-
tation encoding information about selecting and weighting
features, and a new validation measure forming the fitness
function. The datasets were carefully chosen based on ini-
tial analysis to ensure the difficulty and to have different
dimensions and different clusters. Four different clustering
algorithms were chosen to represent different types of clus-
tering approaches in the experiments and comparisons. The
experimental results show that with the features selected
and weighted by PSO-FSW, all the four different clustering
algorithms achieved better performance in terms of F-Score on
datasets with different dimensionalities and different number
of (base-truth) clusters.

Besides the largely improved performance, there are also
outliers with poor F-Score. Further analysis revealed that
there exist solutions leading to trivial clusters, which is a key
challenge in feature selection for clustering, as we discussed in
Section I. In the future, we will investigate how to effectively
avoid or eliminate such situations, but avoiding trivial clusters
is very challenging, which requires appropriate design of sim-
ilarity or distance measures for clustering and the validation
measure in the fitness function.
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