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Abstract—Genetic programming (GP) has the potential to
generate explainable results, especially when used for dimen-
sionality reduction. In this research, we investigate the potential
of leveraging eXplainable AI (XAI) and large language models
(LLMs) like ChatGPT to improve the interpretability of GP-
based non-linear dimensionality reduction. Our study introduces
a novel XAI dashboard named GP4NLDR, the first approach to
combine state-of-the-art GP with an LLM-powered chatbot to
provide comprehensive, user-centred explanations. We showcase
the system’s ability to provide intuitive and insightful narratives
on high-dimensional data reduction processes through case stud-
ies. Our study highlights the importance of prompt engineering
in eliciting accurate and pertinent responses from LLMs. We
also address important considerations around data privacy,
hallucinatory outputs, and the rapid advancements in generative
AI. Our findings demonstrate its potential in advancing the
explainability of GP algorithms. This opens the door for future
research into explaining GP models with LLMs.

Index Terms—Genetic Programming, Non-Linear Dimension-
ality Reduction, Explainable AI, ChatGPT, Large Language
Models

I. INTRODUCTION

GENETIC programming (GP) is a powerful evolutionary
computation technique that evolves computer programs

to solve complex tasks. Its versatility and ability to automat-
ically discover model structure make it an attractive choice
for solving many problems. GP is capable of producing func-
tional mathematical mappings with good predictive accuracy.
These symbolic mappings (trees) are a promising approach for
enabling eXplainable Artificial Intelligence (XAI) [1].

The field of XAI is at the forefront of current research. It is
crucial within sectors such as medical diagnosis and financial
risk assessments, where explainability is required to gain trust
among stakeholders [2]–[4]. However, even with the symbolic
nature of GP, understanding the semantics of a GP model/tree
or the meaning of individual features may require expert
domain knowledge. Even understanding the functionality of
the evolutionary process may lie beyond the comprehension
of end-users.

The term end-users is deliberately vague. Different au-
diences need wildly different explanations, personalised to
their background and requirements. Ribera [5] highlighted the
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importance of approaching XAI from a user-centred perspec-
tive. They categorised the targeted audience into three broad
groups: developers and AI researchers, domain experts, and
lay users. They showed that explanations are multifaceted,
requiring different explanations for every user group. For
example, vocabulary needs to be adapted to match the compre-
hension level of each group, by omitting technical terms for
lay users and integrating domain-specific terminology when
engaging with experts. Humans are also social creatures,
who learn through conversation [6]. An explanation delivered
through a conversational exchange would allow users to di-
rectly request answers suited to their own domain knowledge
and technical background, greatly improving the explanation
quality.

The proliferation of large language models (LLMs) such as
OpenAI’s ChatGPT has powered a notable surge in chatbot de-
velopment, facilitating conversational question-and-answering
over a broad range of domains. Therefore, this study intro-
duces an AI-driven chatbot to explain the functionality of
GP models/trees. Leveraging LLMs in this way capitalises
on a wealth of domain knowledge, aiding in understanding
results. When responses do not align with the user’s level
of understanding, they may seek further clarification through
conversation. The inherent nature of the LLMs enables users
from diverse backgrounds to pose questions around presented
findings by using language, vocabulary, and grammar of their
preference. Existing studies highlight the multilingual capabil-
ities of LLMs [7] and their comprehension in understanding
questions containing grammatical or typographical errors [8].

The versatility of genetic programming deems it applicable
to a plethora of tasks in real-world applications, including
but not limited to symbolic regression [9], job scheduling
[10], classification [11], and feature selection [12]. This paper
focuses specifically on improving the explainability of Genetic
Programming for Nonlinear Dimensionality Reduction (GP-
NLDR) methods. Modern datasets often have thousands or
tens of thousands of features, which can only be processed
by extremely complex and expensive machine learning ap-
proaches [13]–[17]. NLDR methods can greatly reduce the di-
mensionality (number of features) of a dataset, making the data
easier to process and understand. GP-NLDR, unlike traditional
NLDR methods, has shown promise in performing explainable
NLDR, where the reduced dimensions (embedding) can be
directly understood in the context of the original features [17]–
[20]. In this paradigm, each new dimension in the embedding
is represented by a single GP tree, where the tree takes a subset
of original features as its inputs (leaves) and produces a single
output (embedding dimension). Despite continued research,
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GP-NLDR can still produce overly complex trees, which are
not explainable to non-experts.

This study proposes GP4NLDR, a web-based dashboard
that utilises an LLM-powered chatbot to explain GP-NLDR
trees. We opt for a web-based architecture to enhance the
accessibility of our research to the diverse audience iden-
tified in our study. Leveraging an intuitive graphical user
interface with rich visualisations simplifies interaction with
the system, contrasting with alternative delivery methods such
as command-line processes and code libraries. While we
constrain our study’s scope to GP-NLDR, our framework is
applicable to many GP applications, laying the groundwork
for significant advances in explainable GP.

Major Contributions

• This study explores the feasibility of using LLMs such
as ChatGPT to provide human-like explainability of GP
expressions. It contributes to combining the fields of
evolutionary computation and generative AI, a notably
scarce approach in existing literature. We demonstrate
that our proposed methodology can be extended to other
applications of GP.

• Previous work [19]–[21] has presented state-of-the-art
techniques for GP-NLDR. This study makes this research
accessible by making our custom-built online system
GP4NLDR1 publicly available. The platform allows users
to learn about GP-NLDR by running it on datasets using
different fitness functions and run parameters. The GP
expressions and trees are viewable together with run
results.

• Our proposed approach incorporates LLM-driven con-
versational interactions via a chatbot natural language
interface. The chatbot is customised through prompt
engineering and retrieval augmented generation to help
strengthen the understanding of tree expressions and
output. The GP4NLDR software interface allows the use
of the chatbot with self-generated examples or through
pre-loaded case studies.

• Finally, we contribute to the growing body of research
highlighting limitations in using LLMs and the impact
of hallucinations on XAI, with a unique perspective on
these issues within explainable GP.

II. RELATED WORK ON XAI

Recent years have seen the emergence of diverse XAI
techniques fostering the explainability of black-box models.
Comprehensive analyses [22], [23] present the complexities
and nuances of these numerous XAI strategies across broad
interdisciplinary domains. Our focus is not to re-visit the
extensive list already presented by the authors, but rather
highlight some as illustrative examples supporting the goal
of our research. In predictive machine learning models, ap-
proaches such as SHAP [24] and LIME [25] provide insights
for local and global explainability; Anchors [26] provides a
set of rules under which predictions still hold with confidence;

1https://gp4nldr.streamlit.app/

and DiCE [27] is used in modelling what-if counterfactuals.
Previous studies demonstrate their use in domains such as
healthcare [28]–[30] and education [31], [32]. However, these
approaches target model developers capable of translating the
interpretations into lay terms for communicating to stakehold-
ers. Prior studies [33]–[35] have developed chatbots for end-
users to engage in conversational exchanges, enhancing their
understanding of these XAI tools’ output. However, no studies
have utilised groundbreaking large language models such as
ChatGPT within this domain.

There is extensive literature that seeks to improve the
explainability of GP [1] through approaches such as building
smaller trees with bloat control [36] or using fewer features
[37]. However, this poses the same challenges with XAI tools
previously discussed, where the output is targeted towards
those knowledgeable in these concepts, failing to enable XAI
from a user-centred perspective which caters to a broader, non-
expert audience.

Communicating the explainability of AI systems has also
been explored from a social sciences standpoint. Previous
studies [6] highlight how the field of XAI may benefit from
incorporating insights from philosophy, cognitive psychol-
ogy/science, and social psychology to understand how humans
define, generate, and evaluate explanations. Their work high-
lights how XAI may benefit from understanding how decisions
are explained to humans and how humans articulate decisions
to each other.

The role of natural language in generating explanations has
been surveyed in prior studies [38]. The authors concluded
only a handful of recent XAI approaches either considered
natural language explanations for end-users or implemented
a method capable of generating such explanations. A recent
review of works in the emerging field of interpreting LLMs
and using them for explanation highlights LLMs possess the
opportunity to redefine interpretability across a wide range
of applications [39]. A recent study [40] proposes leveraging
large language models for the automated analysis of opti-
misation algorithms within a web-based tool [41] for the
generation of search trajectory networks . They highlight how
this application of LLMs may enhance the user experience
of the tool and bridge the knowledge gap for those without
prior understanding of the application. However, no previous
work has been identified using natural language chatbots to
delve deeper into explaining GP expressions, nor its use in
the field of NLDR. Several notable context-based chatbot
implementations have recently emerged in other domains,
leveraging similar technologies to those implemented in our
study. Aisha [42], a library chatbot, uses prompt engineering
with a Chroma vector database together with LangChain
and ChatGPT to deliver reference and support services to
students and faculty through a Streamlit interface. In the
medical domain, accGPT [43] is a ChatGPT-based chatbot that
provides personalised imaging recommendations supporting
clinical decision-making. It leverages LlamaIndex to access
information within the American College of Radiology docu-
mentation.
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Fig. 1: Overview of GP4NLDR Architecture

III. METHODOLOGY

In this study, we used Streamlit2, an open-source
Python framework, to build an online web-based applica-
tion GP4NLDR3. The application incorporates existing GP-
NLDR code bases from prior works in the field [19]–[21]
to perform the NLDR. The process outputs one GP tree for
each dimension of the new embedding, together with perfor-
mance metrics. We then introduce the use of generative pre-
trained transformer (GPT) LLMs to facilitate conversational
question answering [44], to greatly improve the explainabil-
ity of the trees found by GP-NLDR. We further developed
our approach by incorporating intelligent prompt engineering
and pre-initialising the LLM with additional knowledge from
existing literature through the use of retrieval augmented
generation, which guides it to deliver focused and targeted
on-topic responses. We utilise the popular Langchain [45]
framework to streamline the integration of LLMs and the
workflow components.

Fig. 1 depicts an overview of the GP4NLDR architecture.
The system provides a facility to run the NLDR-GP process
on a given dataset or view pre-loaded examples for quick use.
After results are generated, the chat feature can be initialised.
A written summary of the process is presented as interpreted
by the LLM. Then, further dialogue conversations with the
chatbot can commence. We elaborate on these stages more
comprehensively in the following subsections.

2https://streamlit.io/
3Hosted on Streamlit Community Cloud https://gp4nldr.streamlit.app/

A. GP4NLDR System

Fig. 2 depicts the GP4NLDR system showing parameter
options and dataset information. For ease of understanding
the dataset, the original values are presented, along with the
scaled data4 used in the dimensionality reduction process. We
now discuss the design of each part of the system in turn.

1) Parameter Options for the NLDR process:
• Population Size: the number of individuals in the popu-

lation. A larger size may enhance the learning ability but
increases computational complexity. A smaller size may
lead to insufficient diversity and premature convergence.

• Number of Generations: how many iterations of the algo-
rithm to perform. It requires a balance between allowing
the population to evolve towards an optimal solution
and avoiding extended computational costs. Monitoring
convergence on the fitness plot may help determine a
suitable value.

• Final Dimensions: how many dimensions the embedding
should contain (i.e. the number of GP trees). Prior knowl-
edge of the data domain or task requirements determines
this number. Alternatively, for visualisation of the dataset,
three or fewer dimensions would be chosen.

• Fitness: The fitness function measures the quality of the
NLDR solution and helps guide the evolutionary process
towards a better solution. Available options include GP-
MaL [19], GP-Mal-2 (the first objective of [20]), UMAP
Cost [21] and NRMSE [21].

• Bloat Control: optional techniques to help reduce the size
of GP trees to prevent unnecessary growth, improving

4Data scaled using Scikit-learn’s MinMaxScaler.
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Fig. 2: GP4NLDR System

performance and tree interpretability. Options include: (1)
lexicographic [46] — a parsimony pressure method that
prefers smaller trees when fitness values are equal; (2)
double tournament [47] — uses two tournaments: one
for fitness and one for size, with the selection of which
tournament is run first and the probability that a smaller
individual is chosen over a larger more complex one; and
(3) Tarpeian [48] — which penalises large individuals
during evolution according to a provided probability.

2) Display of NLDR Results: On completion of the GP-
NLDR process, the results are displayed for analysis. A
summary of parameters is noted, followed by tree expressions
and visualisations for each new dimension. The raw embed-
ding result is presented alongside a plot depicting fitness per
generation. If the embedding dimensionality is 3D or lower,
a visualisation of the embedding is provided: either as a 3-
D rotational plot, a 2-D scatter plot, or a 1-D bar graph.
A random forest classifier [49] implemented in Scikit-Learn
[50] with 10-fold cross-validation is also used to provide an
estimated accuracy for both the original dataset and that of the
new embedding, as a proxy of embedding quality.

3) Chatbot: The chat feature is initialised upon entering
a valid OpenAI API key, selecting an LLM (e.g. GPT-3.5 or
GPT-4) for conversation, and confirming the approximate word
limit for responses. The word limit is set to a default of 80
words. Too few words may return insufficient explanations.
Excess words may prolong response times and introduce

verbosity, repetition, or tangential answers.
The pre-engineered prompt (discussed further in Sec-

tion III-D) and initial question ”Provide an exciting summary
of the results” are submitted to the LLM. The LLM returns
a brief overview of the results as a starting answer for
the conversation. Then, two-way conversational question-and-
answering with memory retention begins, utilising retrieval
augmented generation when required. At any stage, the results
and chat history may be downloaded, allowing for reloading
at a later point in time.

4) Pre-loaded Examples: The system provides exploration
of previously generated GP-NLDR evolutionary runs, includ-
ing the case studies presented in this work. The chat feature
is available within each example to help further interpret
the output. This facility allows for the reproducibility of our
research for each GP-NLDR case study presented. LLMs
are deterministic models, fundamentally generating the same
outputs for the same inputs. Nevertheless, as their responses
are probabilistic, they may appear non-deterministic. There-
fore, it may not be feasible to achieve identical explanations
even though the input prompt remains unchanged. If desired,
previously generated results from user experiments may also
be reloaded here for further analysis.

B. Large Language Models

The rapid advancement in LLMs throughout this research
project opened avenues to investigate the capabilities of
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both existing and emerging models, including open-source
solutions. Following the evaluation of the performance and
accessibility for the task at hand5, OpenAI’s ChatGPT-3.5
model (gpt-3.5-turbo) was adopted as a foundation for the de-
velopment of GP4NLDR’s chat feature. This Chat Generative
Pre-trained Transformer model 3.5 is based on the transformer
deep learning architecture. It is designed to generate human-
like text in response to input questions. This state-of-the-art
language model excels at natural language processing and
conversational exchanges.

We used the Python openai library to facilitate an authen-
ticated connection to the OpenAI models with requests submit-
ted via the API endpoint. We refrained from explicitly includ-
ing the model version suffix6 allowing us to take advantage of
the continuous model upgrades, therefore insuring we provided
the safest and most capable model version. OpenAI regularly
upgrade model versions, thus for the long-term viability of
our research it was important to mitigate deprecation issues
stemming from tying the research to specific model versions.
Additional options are provided within the chatbot for using
the legacy model GPT-3 and the most recent addition, GPT-4.
We use the default LLM model parameter settings, with the
temperature set to zero to encourage response consistency. To
access the models in the chat function, a valid OpenAI API
key is required7.

C. Retrieval Augmented Generation

At the time of writing, ChatGPT-3.5 was trained on data
up until the end of September 2021. Consequently, with
some research information beyond its reach or in publicly
unavailable studies, many recent concepts in the evolving
GP field are unknown to the model. Retrieval augmented
generation (RAG) [51] is a technique to address this limitation.
RAG builds a vector store/database of vector embeddings
from relevant documents. By performing vector searching
using similarity metrics, relevant information is extracted and
injected as contextual background information into the user’s
prompt. This helps fill knowledge gaps in the model and
provide it with recent insights, and presents a cost-effective
and dynamic alternative to pre-training or fine-tuning models.

The GP4NLDR processor centres on the articles referenced
in previous studies [19]–[21], but can be easily extended to
other methods. A vector store of these papers was constructed
by generating vector embeddings of the documents, and
then made available to the application. A computationally
expensive vector database8 was not needed for this use
case, and so we opted to use FAISS [52], Facebook’s AI
Similarity Search vector index library9. Given a fixed number
of stored articles, with no requirement to add additional files
or update existing ones, FAISS is a very efficient and suitable
option. The vector store is integrated into the application chat
feature for OpenAI models. During conversational chatting,

5The evaluation process lies outside the contribution of this work and as
such is not presented.

6For example gpt-3.5-turbo-0613
7OpenAI API key available at https://openai.com/
8Vector databases provide create, read, update, and delete functionality.
9https://faiss.ai/

user-provided questions are analysed against a pre-defined set
of keywords: gp-mal, gpmal, gpmal2, gp-mal2,
gp-mal-2, tarp, lexi, tourn, umap, nrmse10.
In our initial prototypes (without a vector store), using these
keywords often returned responses of limited usefulness, even
on occasion provoking hallucinations, as these abbreviations
are less prevalent within the model training data. When
questioned about these keywords in the context of GP
through the ChatGPT OpenAI interface, the LLM did not
consistently provide accurate responses. Hence, should these
keywords be present, RAG is activated, and the FAISS vector
index is queried to fetch relevant background information.
Upon retrieval, the information is injected into the prompt.
For queries outside the keyword list, it is expected that the
model maintains enough background knowledge and the
prompt is sufficient to acquire an informative response to the
query. This process can be seen within Fig. 1.

D. Prompt Engineering

Careful consideration was given to our prompt development
to elicit informative and consistently reliable responses. Fig. 3
shows the entire initial prompt using an example from the
Wine Case Study presented later in our results. Bolded text
represents the automatic injection of content from the specific
example.

• Fig. 3(a) establishes the context for the discussion, di-
recting the LLM to focus on genetic programming and
non-linear dimensionality reduction.

• The fitness function GP-MaL-2 is not explicitly men-
tioned within the publications in the vector store. Conse-
quently, we define it explicitly in the prompt.

• Fig. 3(c) explains the operators used in the GP algorithm.
• Fig. 3(d) informs the LLM with the name of the dataset

and a summary of the parameters used.
• The dataset features are listed in Fig. 3(e). Should the

feature list exceed 40, we replace the feature list with the
text f0 to fn-1 (as a dataset with n features). This tweak
avoids exceeding the token limit for large datasets, such
as COIL20, with more than 1000 features.

• Fig. 3(f) provides the LLM with the dataset dimension
specifications and resulting expressions.

• Providing the classification accuracy of the original and
reduced space in Fig. 3(g) informs the LLM how well
the NLDR process performed.

• Specifying the response word count when initialising
the LLM allows flexibility in token usage during chat-
ting, with the allowance specified within the prompt in
Fig. 3(h).

• Fig. 3(i) guides the LLM further in the expectations for
response content, ensuring that information in the prompt
is not repeated.

• Should the question contain keywords, background infor-
mation is retrieved from the vector store and injected in
Fig. 3(j).

10The keyword list is further customisable in the configuration settings of
the application software.
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(a)

(f)

(c)

(d)

(e)

(b)

(g)

(i)

(h)

(j)

(k)

(l)

You are an expert on genetic programming (GP) and non-linear 
dimensionality reduction (NLDR). You are to discuss explaining the 
results of the GP expressions from NLDR. 

GP-MaL evolves functional mappings from a high-dimensional 
space to a lower dimensional space through the use of interpretable 
trees. 
GP-MaL-2 is different from GP-MaL. It is the first objective of GP-
Mal-MO. 

The operators used in expressions are: x (multiply), ÷ (divide), max 
(maximum), min (minimum), + (add),— (subtract), ReLU (relu), sig 
(sigmoid), if (if), |—| (absolute subtract), |+| (absolute add). 

The dataset is called Wine. 
Summary of parameters is Population Size: 100. Generations: 
100.Fitness: GP-MaL. Bloat: Lexicographic ... Measure: Total 
Nodes ... Bucket Method: Direct Bucketing ... Bucket Value: 2.

The features are Alcohol (f0), Malic acid (f1), Ash (f2), Alcalinity 
of ash (f3), Magnesium (f4), Total phenols (f5), Flavanoids (f6), 
Nonflavanoid phenols (f7), Proanthocyanins (f8), Color intensity 
(f9), Hue (f10), OD280/OD315 of diluted wines (f11), Proline 
(f12). 

Using GP the original 13 features have been reduced to new 
features in 2 dimensions, using the mapping expressions: 
Dim0=f6; 
Dim1=x(sig(ReLU(—(f12, f9))), ReLU(+(|—|(-0.5951, f9), 
max(-0.8216, f0))));

The accuracy of the original dataset is 0.9833. 
The accuracy of the new dimensional space is 0.9333. 

Given the text of question, it is your job to answer that question in 
approximately 80 words. 

There is no requirement for giving background to GP nor NLDR 
unless asked. The feature expressions are stated in the prompt and 
do not need restating in the answer.  Use feature names rather than 
abreviations in the discussion. State the original features that are 
important in the GP expressons for each dimension, and those that 
are less important. Try to give an explanation about why the features 
are very important or less important in the context of the dataset.

For context here is background related to the question:
{….}

Human: Provide an exciting summary of the results.
AI: The GP-MaL algorithm successfully reduced the original 13 
features of the Wine dataset to 2 new dimensions. In the first 
dimension, the feature expression includes the Flavanoids (f6) 
feature, which suggests that this feature is important in 
distinguishing between different wine samples. In the second 
dimension, the expression includes the Proline (f12), Color 
intensity (f9), and Alcohol (f0) features, indicating their 
significance in the dataset. The other features are less 
important in the context of the dataset, as they are not included 
in the GP expressions.

Human: explain the 2nd dimension further
AI:

Fig. 3: Prompt Example

• Fig. 3(k) requests an initial response from the LLM to
provide an overview of the results.

• Fig. 3(l) shows an example initial conversational chat
dialogue between the Human and the AI.

E. LangChain

LangChain [45] provides a modular framework for building
applications powered by LLMs. The toolkit offers flexibility
for integrating a diverse range of LLM model variants. Its
versatile structure and functionality facilitated the integration
of RAG into our application workflow. Preserving conversa-
tional memory within chatbots is paramount, and LangChain
seamlessly facilitated the memory retention process.

F. GP4NLDR Evaluation

We demonstrate the capabilities of GP4NLDR and chat
interactions over three case studies. The first two case studies
are based on the Wine [53] and Dermatology [54] datasets,
which contain meaningful feature names. The final case study
uses the larger COIL-20 [55] dataset with 1024 features, lack-
ing descriptive feature names. These examples demonstrate
the system’s behaviour across a range of different parameter
options:

• A small dataset with 13 features and 178 instances
through to a larger dataset of 1024 features and 1,440
instances.

• Different fitness functions (GP-MaL and GP-MaL-2).
• Reducing to two or three final dimensions.
• The use of lexicographic bloat control compared to no

bloat control.
• From 100 generations through to 1000 generations.

Furthermore, these case studies investigate the calibre of
chatbot responses in the following situations:

• Supplying descriptive feature names compared to sequen-
tially allocating non-descriptive feature names, which
may limit background information.

• Using keywords such as gpmal to engage with RAG.
• Subjective questioning, for instance, querying how good

results are.
• Asking questions using terminology not identical but

similar to feature names in the dataset.
• Probing the importance of features.
• The multilingual capabilities of LLMs.
In presenting the evaluation of each case study, we showcase

subsections of the system results for illustration while depict-
ing the complete interface in the Appendix. It is not feasible to
demonstrate all possible parameter settings and scenarios. A
curated selection has been chosen, emphasising those deemed
most meaningful in showcasing our research results.

We pose questions in a manner that aligns with lay users.
This demographic of users stand to benefit most from our
study as they more typically rely on an intermediary party
to translate existing ML explainability tools into summary
text. The results are evaluated manually by comparing the
correctness of the generated chatbot responses to the results
depicted in the GP expression trees. In addition, we manually
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First Dimension:(a)

Second Dimension:(b)

Fig. 4: Wine Case Study Trees

(a) (b)

Fig. 5: Wine Case Study Plots

evaluate and discuss the quality and accuracy of the responses
to queries unrelated to the trees, which more specifically
target dataset domain, GP, or NLDR questions. As the work
presented in this study is the first to use LLMs to provide
explanations of GP trees, difficultly lies in benchmarking our
approach and providing measurable metrics of accuracy.

Our developed system11 has been made publicly available
for further experimentation and testing. The presented case
study examples are viewable within the application, and may
be further analysed using the chatbot. However we note,
as touched on earlier, the generation of identically worded
responses from subsequent questioning using the same prompt
may not be achievable due to the inherent nature of LLMs.
In this work we perceive this as an advantage, imparting a
sense of personalised responses to the user rather than generic
explanations.

IV. RESULTS

A. Wine Case Study

The Wine dataset12 consists of 13 features and 178 instances
detailing the chemical analysis of three types of Italian wine.
The GP4NLDR process is run using the GP-MaL fitness func-
tion, reducing the Wine dataset to two dimensions after 100

11https://gp4nldr.streamlit.app/
12https://archive.ics.uci.edu/dataset/109/wine

(b)

(d)

(c)

(a)

Fig. 6: Wine Case Study Chat

generations using a population size of 100 and lexicographic
bloat control. The first embedding dimension (GP tree) shown
in Fig. 4(a) is a single node, representing the flavonoids
feature. The second tree utilises the Proline, colour intensity,
and alcohol features in Fig. 4(b). The fitness plot in Fig. 5
shows the function converges quickly, and the three classes
are easily distinguishable within the 2D embedding plot.

Initiating the chatbot allows further investigation into the
results. Including the feature names within the dataset structure
feeds the LLM additional context when considering why some
features are present in the new dimensional space while others
remain absent. The overview initially generated is illustrated
in Fig. 6(a). A brief discussion of the dimensionality reduction
is given together with noting the features present in each
dimension and deemed important. In Fig. 6(b), when asked
to “explain the 2nd dimension further”, the LLM expands
the justification for the inclusion of each feature by providing
definitions of the features and their relationship to the dataset.
When questioning the LLM about a specific feature “what is
hue?” in Fig. 6(c), the LLM gives an overview of its definition
followed by its contribution to the results. In this example,
hue was not part of the embedding and hence not deemed as
important.

Supplying the accuracy of the embeddings when classified
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Fig. 7: Dermatology Case Study Plot
by a random forest algorithm may give somewhat subjective
opinions from the LLM when asked if it is a “good” reduction.
Fig. 6(d) shows the LLM believes this example is “effective”
with ”a slight decrease in accuracy” from 0.9833 to 0.9333.

B. Dermatology Case Study

The Dermatology dataset13 with 34 features classifies the
type of erythematous-squamous disease into six classes (pso-
riasis, seborrheic dermatitis, lichen planus, pityriasis rosea,
chronic dermatitis, and pityriasis rubra pilaris.) 12 features are
clinical evaluations with a further 22 histopathological features
from skin samples. There are 358 instances in total.

The GP4NLDR process is run using the GP-MaL-2 fitness
function, reducing the Dermatology dataset to 3 dimensions
over 200 generations using a population size of 100 and
lexicographic bloat control. Fig. 7 illustrates the 3-D plot rep-
resenting the reduced embedding. The three new dimensions
each use between four and six features.

Once more, including the feature names within the dataset
structure has assisted the chatbot in providing contextual con-
versational exchanges. When asked “What if I am really old
and itchy?”, the LLM maps the word “old” to the feature age
and the word “itchy” to the feature itching. Fig. 8(a) shows
it subsequently responds that neither of these features appears
in the tree expressions and hence they have less influence or
relevance in determining the type of skin condition.

In asking “Is GP-MaL better than GP-MaL-2?” in Fig. 8(b),
the LLM notes it has not been supplied with information
detailing specific comparisons between the two functions.
This response may be perceived as uninformative; nonethe-
less, it shows that clever prompt engineering can help deter
hallucinations. Throughout prompt development, experiments
demonstrated the LLM’s susceptibility to generating inaccu-
rate information. Fig. 9 illustrates this concern by asking
the question “Explain what GP-Mal is” through the online
ChatGPT Web Interface14. ChatGPT invents the definition
“Generative Pretrained Transformer for Malicious Software”
and endeavours to discuss it convincingly. This example is
testament to the mitigation of such hallucinatory outcomes by
incorporating tailored prompt engineering.

13https://archive.ics.uci.edu/dataset/33/dermatology
14https://chat.openai.com/

(b)

(a)

Fig. 8: Dermatology Case Study Chat

Fig. 9: ChatGPT Web Interface https://chat.openai.com/

C. COIL-20 Case Study

The Columbia Object Image Library (COIL-20) dataset15

consists of gray-scale images of 20 objects. For each object,
a photographed image was captured every 5 degrees as it
was rotated 360 degrees on a motorised turntable, giving 72
images for each object. Each of these images represents one
row in the dataset, giving 1,440 rows in total for the 20
objects. The original 128x128 pixel image size is cropped
to 32x32 pixels, producing a 1024-dimensional feature ex-
ample. The absence of feature names necessitates generically
assigned attribute labels f0 to f1023. The full results in the
supplementary material illustrate the results from the NLDR
process, producing somewhat large trees. The fitness plot
depicts the gradual improvement in the function over the
1000 generations. In reducing the dimensions from 1024 to
2, accuracy has decreased from 0.9868 to 0.6375.

15https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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(c)

(a)

(b)

Fig. 10: COIL Case Study Chat

Using the chatbot, we ask “What makes a feature impor-
tant?”. In Fig. 10(a), the LLM informs us important features
have a significant impact on the mapping from the high-
dimensional space to the low-dimensional space. It continues
to explain the importance is determined by the feature’s
appearance and usage in the expressions. Frequently used
features or those having a strong influence on the mapping
are considered important.

To further explore the importance of features in the dataset,
we ask the LLM in Fig. 10(b) to name the ten most significant
features. Initially, it assesses the first dimension. f509 appears
twice, with one instance high up in the tree, having a signif-
icant influence on the outcome. f602 also appears high up in
the tree, presents itself 4 times, and is on both sides of the
root max node. f423 is featured in the next level, and f583
appears five times, with two instances in the subsequent level.
Moving to the second dimension, f56 with 6 occurrences has
2 of these instances high up in the tree on both sides of the
root max node. f778 with 4 occurrences sits alongside f56 on
the 3rd level of the tree. f1022, f814, f157, and f770 complete
the top 10.

To highlight the multilingual capabilities of the chatbot,
we ask it in French “Est-ce une bonne réduction?” meaning
“Is this a good reduction?”. The chatbot also responds in
French, as shown in Fig. 10(c). Using Google Translate, we
can translate this back to English, which gives us: “Reducing
1024 features to 2 dimensions using GP-MaL-2 is not very

good. The precision of the reduced dimensional space is only
0.6375, which is significantly lower than the precision of the
original dataset (0.9868). This suggests that reduced features
may not capture enough information or discriminate well
between different classes or patterns in the COIL20 dataset.
It is possible that the mapping expressions used in GP-MaL-2
did not effectively capture the underlying data structure”. The
multilingual ability of LLMs is a significant opportunity for
making advances in AI accessible to a wider audience.

V. DISCUSSION

The experiments in this study confirm the effectiveness of
an XAI dashboard in communicating the results of GP-NLDR.
Leveraging LLMs such as ChatGPT effectively contributes
to user-centred explanations through conversational chatbot
technology. Employing AI-powered web-based applications
such as GP4NLDR draws on the latest cutting-edge research
delivering state-of-the-art tools to individuals. In this section,
we discuss several of our findings in more detail. We believe
that aspects of this discussion could be very useful in guiding
the development of methods integrating GP and LLMs.

Prompt engineering is a dynamic and evolving field
requiring careful crafting to steer models towards relevant
and accurate responses. Recently, it has gained significant
attention due to its pivotal role in shaping the behaviour
of LLMs. The trend towards formalising prompt structures
has given rise to defining prompt techniques such as zero-
shot, few-short, chain-of-thought, tree-of-thought, and more.
In this work, we adopt a combination of techniques. Structured
prompting can effectively maintain a uniform tone in chatbot
responses. However, in our setting, this is not of paramount
concern. Our developed prompt, although slightly verbose and
unstructured, introduces novelty and diversity, enabling the
LLM to craft its responses creatively if desired. Avoiding
explicitly requesting a fixed response structure, such as bullet
points, sentences, paragraphs, or abbreviations, contributes
to enhancing engagement with the chatbot. Furthermore, in
targeting a user-centred approach, we do not seek to impose
restrictions on response style, which may potentially hinder
ingenuity and interest when generating explanations. However,
potentially allowing the user an option to indicate their level of
comprehension may facilitate a more tailored response tone,
which could be addressed in future work.

Data privacy concerns within LLM-powered applications
continue to be at the forefront of discussions in research and
industry. End-users interacting with AI applications should
seek reassurance in knowing the confidentiality and security
of their data is maintained, especially sensitive and personal
information. In this work we demonstrated within the prompt
template no raw data is transmitted to the LLM, only the
dataset name and feature list. Nonetheless, this does not
prevent the user from entering sensitive information and trans-
mitting it voluntarily.

Hallucinations are a growing concern in developing ap-
plications integrating LLMs. Throughout the development of
this work, we witnessed entirely fictional information re-
turned from the models following questioning. To reduce
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the incidence of hallucinations, we integrated our tailored
prompt template with retrieval augmented generation (RAG).
This generally addressed this problem, but, unfortunately, no
robust solution has yet been identified to circumvent these
situations. Throughout the development of the prompt, we
encountered guardrails imparting superfluous advice not per-
tinent to providing further explanations. Ongoing research in
LLMs is expected to address this. We also note other recent
concerns arising with the use of LLMs in applications such
as adversarial attacks [56] and bias within the models and
their benchmarks [57]. It is not within the scope of this work
to delve into these issues further, but we acknowledge these
challenges are of ongoing concern and necessitate further
research.

Rapid advancements are frequently seen in the fast-moving
domain of generative AI. During the preparation of this paper,
recent announcements such as ChatGPT Enterprise have been
regularly released. The edition boasts an extended token limit
of 32k (4 times the current capacity), enterprise-grade privacy
and security, and the expansion of model knowledge through
integration with company data16. Within our research setting,
an increased token limit may enable the complete list of
feature names for higher-dimensional datasets to be included
in the LLM prompt, eliminating the need for truncation.
Occasionally, exceptionally lengthy GP expressions may sur-
pass the current token limit; an extended token limit may be
advantageous in some scenarios. With the addition of extra
privacy measures, the prompt could be enriched to include
a subset of dataset rows. Supplementing the model with this
information may enhance the conversational explanations. The
facility to integrate company data would be an ideal alternative
to using RAG. These innovations will continue to address
ongoing concerns in developing AI-driven applications.

Future work could delve deeper into the use of LLMs
for explaining GP expressions in other fundamental machine
learning tasks. Exploring other retrieval methods and/or al-
ternative vector store approaches has the potential to further
improve the efficacy of our framework. In addition, exploring
alternative architectures to the Langchain framework used in
this study may offer further avenues for harnessing LLMs.
Our work touched on the feasibility of leveraging other
open-source LLMs. Further development of tailored prompt
templates and consideration of fine-tuning these models could
be advantageous in assessing their performance comparison
with ChatGPT. Exploring the extension of chat parameters,
such as explicitly targeting different audiences, may improve
user experience and the understanding of explanations. To
more rigorously validate our research, future work will include
human evaluation of the explanations [58]. Through user-
group experiences we may assess the quality of results on a
larger scale and endeavour to provide measurable benchmarks
for use in subsequent research within this domain.

VI. CONCLUSION

This study presented a novel dashboard application to ex-
plain the results of GP-based nonlinear dimensionality reduc-

16https://openai.com/blog/introducing-chatgpt-enterprise

tion. Our proposed approach cohesively incorporates a variety
of techniques, including a user interface, visualisation, a large
language model chatbot, retrieval augmented generation, and
prompt engineering to provide a system that greatly improves
the explainability of GP. This is the first study of its kind
encapsulating these elements within a unified system, span-
ning the domains of evolutionary computation and generative
AI. We presented three robust case studies to highlight the
usability of our research in this field. Incorporating a chatbot
built on groundbreaking LLM techniques provides significant
improvements to the explainability of GP expressions, with po-
tential implications for the wider GP community. Furthermore,
we have highlighted how leveraging LLMs for conversation
provides a user-centred approach accommodating the needs
of a diverse audience. Our work has contributed to the gap
in research around leveraging generative AI in explainable
evolutionary computation.
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Appendix

Fig. 11: Wine Case Study Results from GP4NLDR
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Fig. 12: Wine Case Study Chat Conversation Examples
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Fig. 13: Dermatology Case Study Results from GP4NLDR
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Fig. 14: Dermatology Case Study Chat Conversation Examples
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Fig. 15: COIL20 Case Study Results from GP4NLDR



17

Fig. 16: COIL20 Case Study Chat Conversation Examples
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