
New Representations in Genetic Programming
for Feature Construction in k-means Clustering

Andrew Lensen, Bing Xue, and Mengjie Zhang

School of Engineering and Computer Science,
Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

{Andrew.Lensen,Bing.Xue,Mengjie.Zhang}@ecs.vuw.ac.nz

Abstract. k-means is one of the fundamental and most well-known algorithms
in data mining. It has been widely used in clustering tasks, but suffers from a
number of limitations on large or complex datasets. Genetic Programming (GP)
has been used to improve performance of data mining algorithms by performing
feature construction — the process of combining multiple attributes (features)
of a dataset together to produce more powerful constructed features. In this
paper, we propose novel representations for using GP to perform feature con-
struction to improve the clustering performance of the k-means algorithm. Our
experiments show significant performance improvement compared to k-means
across a variety of difficult datasets. Several GP programs are also analysed
to provide insight into how feature construction is able to improve clustering
performance.

Keywords: Cluster Analysis; Feature Construction; Genetic Programming;
k-means; Evolutionary Computation

1 Introduction

Clustering is a common data mining task which groups similar data items (instances)
of a dataset into homogeneous groups (clusters) [1,2]. k-means [1,3] is one of the most
widely used clustering algorithms due to its simple design and low computational
cost. However, it suffers from several limitations: the quality of the clustering solution
(partition) is heavily dependent on the initial cluster centroids, and cluster quality
quickly decreases as the number of clusters (K) increases.

Feature construction (FC) is a common technique used to improve the performance
of learning algorithms in data mining [4]. FC algorithms produce powerful high-level
CFs (CFs) by combining features from the original feature set. By only using a few
CFs instead of the full feature set, data mining algorithms can train more efficiently
(due to a smaller search space) and more effectively, while generally producing more
concise and understandable solutions [5].

Genetic Programming (GP) [6] is an Evolutionary Computation (EC) [7] technique,
which has been shown to be effective at performing FC, especially on classification
problems [8, 9]. GP, like other EC algorithms, produces solutions to a problem by
performing a population-based heuristic search, using Darwinian inspired principles to
encourage co-operation between solutions. Tree-based GP has been extensively used
for FC as its representation can easily combine features in different ways [9]. One of the
most successful approaches in classification tasks has been to use a wrapper approach,
where GP is used to construct features which are then fed into an existing classifier.

This allows the performance of an existing, well-founded classifier to be improved by
using a smaller number of more powerful features.

Unlike in classification tasks, there has been very little work conducted using GP
for FC for clustering [10]. Most existing work does not examine the clustering perfor-
mance on a large number of clusters, and no work has been proposed using a wrapper
approach where GP produces CFs that are fed to an existing clustering algorithm. The
performance of k-means could be improved by using such an approach, where a GP
individual produces several CFs which are then fed into k-means to perform cluster-
ing. In this way, the performance of k-means can be improved beyond what is possible
with the original features alone. Traditional GP program designs output only a single
value from a single individual, meaning only a single CF is created.While a single CF
may be adequate on easy datasets with a small K, when there are many clusters it
would be very difficult to accurately partition the dataset using a single value. Hence,
new GP representations would need to be developed to produce multiple CFs. The
evolved system can also be taught to produce good clusters according to any measure
of cluster quality, as GP individuals will learn to produce CFs to maximise the fitness
of the wrapped k-means algorithm. In contrast, standard k-means simply minimises
intra-cluster variance without considering any other indicators of cluster quality. As
clustering will be performed on a constructed feature space, using a clustering al-
gorithm more advanced than k-means may not be necessary, as GP should learn to
produce features tailored to the clustering algorithm being wrapped.

This paper aims to explore the potential of using GP for FC with a wrapper
approach to improve the clustering performance of k-means. We will:

– Propose new GP representations for producing multiple CFs from a single GP
individual,

– Investigate suitable fitness functions for improving cluster quality,
– Evaluate our proposed representations and fitness functions across a variety of

datasets, and
– Analyse evolved GP trees to understand the usefulness of the CFs they produce.

2 Background

2.1 Clustering

A variety of clustering algorithms have been proposed which are effective on differ-
ent datasets and problems. These can be generally grouped into a number of cate-
gories such as hierarchical, density, partitional, or graph-based algorithms [11]. Pop-
ular algorithms in each of these categories includes single- or complete-linkage clus-
tering [11]; DBSCAN [12]; k-means [3]; and the Highly Connected Subgraphs (HCS)
algorithm [13]. This paper focuses on applying GP to FC with k-means, a centroid-
based, partitional algorithm which is described below.

The k-means algorithm begins by randomly selecting K instances from the dataset
to act as the K initial cluster centres. Each instance in the dataset is then assigned
to the nearest cluster centre using a distance measure such as Euclidean distance.
The centres of each cluster are then recomputed by finding the mean of all instances
in the cluster. Each instance is then again assigned to its nearest cluster and cluster
centres are recomputed. This process continues for a number of iterations or until the

clusters stabilise. While k-means is efficient and has generally good performance, it has
a number of limitations: the clusters produced are very sensitive to the initial centres
chosen, when K is high performance tends to decrease, and the clusters produced will
tend to be compact but may not be well-separated or well-connected. Furthermore,
as k-means uses a distance measure to assign instances to clusters, it cannot produce
non-hyper-spherical clusters [1]. Hyper-spherical clusters are those where instances
lie in a hyper-spherical region around the cluster mean; in a two-dimensional feature
space, this produces circular clusters. Clusters need not be hyper-spherically shaped;
a dataset may contain clusters of varying shape (e.g. elliptical, spiral, ring, etc. [14]).

2.2 Related Work

When GP is used for FC, terminal nodes generally draw from the feature set, and func-
tion nodes are operators which operate on real values, such as the arithmetic functions.
The small amount of work using GP for clustering uses a variety of approaches [10],
several of which perform FC within the GP tree. However, no existing work uses a
wrapper approach where an existing clustering algorithm is used for clustering. We
discuss existing work which has used GP for FC in clustering in this subsection.

Boric and Estévez [15] proposed a multi-tree approach where each GP individual
contains multiple trees, each of which corresponds to a single cluster. An instance is
fed to to each tree, and the tree with the highest output is chosen as the instance’s
assigned cluster. This approach implicitly performs FC within the trees, as the termi-
nal set contains features (only some of which are used), and the function set contains
arithmetic operators to combine features. However, the authors only tested their ap-
proach on datasets with a relatively low K (a maximum of K = 7). If K was higher,
e.g. K = 40, it is likely that this approach may perform poorly as training 40 trees
simultaneously is very difficult due to a very large search space.

Ahn et al. [16] proposed an approach using a simple GP program design where the
output of the tree directly maps to a cluster. The terminal set consists of the feature
set and a random constant, and the function set contains arithmetic operators. As
in Boric’s work, FC is implicitly performed within a tree. The output of the tree
is rounded using integer rounding to assign an instance to a cluster. This rounding
technique can cause issues as it introduces an uneven search space — an output of 0.99
maps to the “0” cluster, despite being much closer in distance to the “1” cluster. Using
such a multi-threshold system is a technique which is known to give poor performance
in multi-class classification [5]. Using GP to perform only FC in combination with an
existing clustering algorithm will avoid this issue.

3 Proposed Method

In this section, we propose two new representations for performing FC using GP for
clustering. We also introduce two fitness functions which can be used to train GP with
k-means to improve clustering performance.

3.1 Multi-Tree Representation

To allow multiple CFs to be produced by a single GP individual, we propose an ex-
tension to the standard single-tree GP representation, whereby an individual contains

multiple trees, producing multiple CFs. The number of trees, t, required is dependent
on the dataset being clustered — generally, a higher K necessitates a higher t.

The function set used contains a number of standard arithmetic operators (+,−,×,÷, |+
|, | − |), as well as the max and min operators. Each of these operators take two chil-
dren and produce a single output. The ÷ operator is protected division; if the second
child (the divisor) is 0, the operator returns 1. The final operator in the function set
is if , which takes three children and returns the value of child2 if child1 is positive;
otherwise it returns the value of child3. The if operator is used to allow conditional
behaviour in the GP program. The terminal nodes consist of the features of the dataset
(f1 through to fm for m features) as well as a random double in the range [0, 1].

When a multi-tree approach is used, the crossover and mutation operators in the
evolutionary process must be adapted. In this work, we use a common approach
whereby crossover is performed by selecting two random individuals, selecting a ran-
dom tree from each of the individuals, and then selecting a random sub-tree from each
tree to use for crossover. Mutation is performed by choosing a random tree from a
random individual to be mutated.

While the multi-tree approach is reasonably straightforward to design, it has a
number of limitations; most notably, t must be set in advance. The crossover operator
used may also be problematic; as any two random trees can be chosen for crossover,
trees being crossed over may not correspond to similar CFs, and so the CFs produced
are unlikely to be fully distinct from each other. Redundancy across a constructed
feature set may affect the efficiency and interpretability of a given solution.

3.2 Vector Representation

To address these issues, we also propose a single-tree approach which utilises a vector
representation to produce multiple CFs from a single tree. The vector representation
has no t parameter and so no parameter tuning is required. We use a similar function
set as in the previous approach, but adapt each function to take two vectors as input
and produce a vector as output. Each function operates on the input vectors in a
pairwise manner, and the output vector has length equal to that of the smaller vector.
We also introduce a concat function which takes two vectors as input and outputs
a vector which is the result of appending the second vector to the end of the first.
This concat function allows vectors of variable length to be generated, allowing GP to
automatically generate a dynamic number of CFs. By using several concat functions
in a single tree, the constructed feature vector will grow as the tree is evaluated from
bottom to top. The terminal set remains the same as in the previous approach, however
each terminal node now outputs a vector containing the terminal value.

3.3 Fitness Function

When K is fixed, the most common fitness function is the
∑

Intra fitness [11]:

∑
Intra =

K∑
i=1

∑
Ia∈Ci

d(Ia, Zi) (1)

where Ci represents the ith cluster, Ia ∈ Ci represents an instance in the ith cluster
and Zi represents the mean of the ith cluster. This fitness function is what is minimised

by k-means — when K is known, we should encourage all clusters to be as compact as
possible, by minimising

∑
Intra. One limitation of this measure is that clusters are

encouraged towards hyper-sphericality; clusters will be unlikely to form non-spherical
shapes that can occur on certain datasets.

One way of avoiding this problem is to use a fitness function based on connected-
ness. Connectedness measures the extent to which instances are in the same cluster
as their immediate neighbours; close instances are similar and should fall in the same
cluster. We propose a new fitness function, based on that proposed by Handl et al. [17],
that computes the mean connectedness of all clusters in a partition:

Connectedness =
1

K

K∑
i=1

1

|Ci|
∑

Ia,Ib∈Ci

dinverse(Ia, Ib) (2)

dinverse(Ia, Ib) = min
[1

d(Ia, Ib)
, 10
]

(3)

The above fitness function, which should be maximised, encourages clusters to
contain instances which are close together. Equations (2) and (3) contain a number of
extensions to the one proposed by Handl et al. [17]:

1. Closer neighbours are weighted more strongly, by directly using the distance be-
tween neighbours in the fitness calculation. The inverse distance is capped to a
maximum of 10 (i.e. when dist ≤ 0.1) to prevent very similar/identical instances
overly affecting fitness. The value of 10 was chosen empirically.

2. The average connectedness is calculated across the set of clusters, instead of sum-
ming over all instance pairs. This discourages solutions with one very large cluster
(with very good connectedness) and several very small clusters.

3. The average connectedness within a cluster is used (instead of summing), to pre-
vent very close instances from being over-emphasised in the fitness measure.

It is hoped that by using connectedness, GP will produce features that allow for
non-hyper-spherical clustering — although k-means itself will create hyper-spherical
clusters in terms of the CFs, the CFs created by GP need not be linear transformations
of the original features. The ability of our wrapper approach to train k-means based
on different fitness measures allows k-means to be adapted to perform well on datasets
that it would otherwise struggle on, especially when it is used with only a few CFs.

4 Experiment Design

Each combination of the two representations and two fitness functions were evaluated
on a range of datasets using a variety of metrics. In addition, k-means was run across
all datasets using the full feature set. As all of the methods are non-deterministic, each
method is run 30 times using different seeds; the mean for each metric is computed.

Table 1 shows the evolutionary parameters used for all the GP methods across all
the datasets. For the multi-tree approach, t is set to 7 — this was found empirically to
be the required number of trees in order to give good performance across all datasets. k-
means is also run for 100 iterations, or until convergence is reached (i.e. when cluster
centres do not move across iterations). The initial cluster centres for k-means are
randomly selected from the dataset. The seed of k-means is determined using a hashing
function applied to a GP tree so that each tree produces consistent partitions.

Table 1: GP parameter settings

Parameter Value Parameter Value

Generations 100 Crossover Rate 80%
Population Size 1024 Mutation Rate 20%
Minimum Depth 2 Elitism top-10
Maximum Depth 8 Selection Type Tournament
Initial Population Half-and-half Tournament Size 7

Table 2: Datasets used in the experiments.
Real-World UCI datasets from [18]. Synthetic datasets from [17].

Name
No. of

Features
No. of

Instances
No. of
Classes

Name
No. of

Features
No. of

Instances
No. of
Classes

Iris 4 150 3 10d10c 10 2730 10
Wine 13 178 3 10d20c 10 1014 20

Movement
Libras

90 360 15 10d40c 10 1938 40
50d10c 50 2699 10

Breast
Cancer

9 683 2 50d20c 50 1255 20
50d40c 50 2335 40

Image
Segmentation

18 683 7 100d10c 100 2893 10
100d20c 100 1339 20

Dermatology 34 359 6 100d40c 100 2212 40

4.1 Datasets

A range of synthetic and real-world datasets were used to comprehensively evaluate
the proposed methods, as shown in Table 2 Datasets were scaled so that each feature
had values in [0, 1], to prevent bias towards features with large ranges.

The synthetic datasets are chosen from a widely-used study by Handl et al. [17].
These datasets contain 10, 50, or 100 features and 10, 20, or 40 clusters. The synthetic
datasets are used to test the performance of the proposed methods when K is high;
k-means and other existing methods perform poorly on high K values.

The real-world classification datasets were chosen from the UCI machine learning
repository [18], which has been commonly used in clustering studies. We use these real-
world datasets to evaluate how well our proposed methods can re-create the known
classifications (as is common in the literature); the class labels are not used during
training, and are only used to evaluate how well the partitions produced match the
known classes. As clustering a classification dataset is harder than clustering a specif-
ically designed clustering dataset, we generally use real-world datasets with small K,
but also include the Movement Libras dataset (with K = 15) to give an indication of
performance on hard classification problems.

4.2 Evaluation Metrics

Clustering performance is measured using the two internal metrics defined previously,
which directly measure the quality of a cluster partition. Connectedness (see Equation
(2)) evaluates how well neighbouring instances are allocated to the same cluster, and∑

Intra Distance (see Equation (1)) indicates how compact the clusters are.
In addition, we use two external metrics to measure how well the cluster parti-

tions produced correspond to the dataset’s class labels. These are class purity, which

measures the homogeneity of each cluster with respect to the class labels, and the
F-measure, which measures how well pairs of instances agree in terms of the clusters
they are allocated to and their class labels. These measures are defined as follows:

1. Class purity: computed according to the following steps:
(a) For each cluster, find the majority class label of that cluster’s instances.
(b) Count the number of correctly classified instances in the cluster, where an

instance is correctly classified if it belongs to the majority class.
(c) Calculate class purity as the fraction of correctly classified instances across the

dataset.
2. F-measure: We use an adaptation of the F-measure used in classification. We

consider each pair of instances in turn (as it is not possible to directly decide if a
given instance is in the “right” cluster) and select from the following cases:
(a) Same class label and assigned the same cluster: true positive (TP).
(b) Same class label and assigned different clusters: false negative (FN).
(c) Different class labels and assigned different clusters: true negative (TN).
(d) Different class labels and assigned the same cluster: false positive (FP).
The F-measure is then calculated in the normal way using the total number of
TPs, FPs, and FNs:

F-measure = 2× precision× recall

precision + recall
(4)

precision =
TPs

TPs + FPs
(5) recall =

TPs

TPs + FNs
(6)

5 Results and Analysis

Tables 3 and 4 show the performance of the four GP methods and k-means (using
all features (AF)) across the six real-world and nine synthetic datasets respectively.
MTConn and MTIntra are the multi-tree approaches using the connectedness and

∑
Intra fitness function respectively, with t = 7. VectorConn and VectorIntra are the
two vector approaches, each using one of the fitness functions proposed. Each metric
is labelled with an “↑” or “↓” if it should be maximised or minimised respectively. The
four metrics are: Conn (connectedness),

∑
Intra (

∑
intra distance), Purity (class

purity), and FM (the F-measure). For the GP methods, each result is labelled with a
“+” or a “−” if it is significantly better or worse than the k-means baseline according
to a Student’s t-test performed with a 95% confidence interval. A lack of a “+” or “−”
indicates no significant difference.

5.1 Results on Real-World Datasets

The GP methods generally perform well compared to k-means across the real-world
datasets. All four of the GP methods are significantly better in terms of the F-measure
on the Iris, Wine, and Image Segmentation datasets. At least one of the GP methods is
significantly better than k-means on all remaining real-world datasets; GP is only sig-
nificantly worse than k-means when using connectedness on the Breast Cancer dataset,
where the

∑
Intra fitness measure gives much better performance. The connectedness

Table 3: Performance on Real-World Datasets.

Method Conn ↑ Intra ↓ Purity ↑ FM ↑ Conn ↑ Intra ↓ Purity ↑ FM ↑
Iris Wine

MTConn7 223.4+ 29.59+ 0.8989+ 0.8308+ 90.13+ 88.99− 0.9723+ 0.9444+

MTIntra 26.49− 29.28+ 0.8867+ 0.8111+ 7.621+ 88.7+ 0.9663+ 0.933+

VectorConn 223.1+ 29.59+ 0.9502+ 0.9086+ 90.12+ 89.01− 0.9697+ 0.9392+

VectorIntra 26.49− 29.28+ 0.8867+ 0.8111+ 7.618+ 88.7+ 0.9661+ 0.9325+

k-means AF 26.77 31.39 0.8116 0.7544 7.561 88.74 0.9491 0.8998
Movement Libras Breast Cancer

MTConn7 19.28+ 424.9− 0.4424− 0.3417 895.8+ 369.7− 0.9101− 0.8445−

MTIntra 5.473+ 400.2+ 0.472 0.3527 15.63+ 331.6+ 0.9675+ 0.9423+

VectorConn 19.1+ 414.3 0.4583 0.3434 898.1+ 376.7− 0.8972− 0.824−

VectorIntra 5.486+ 399.0+ 0.4749+ 0.3542+ 15.64+ 331.6+ 0.9669+ 0.9413+

k-means AF 5.134 414.5 0.4619 0.3439 15.52 332.0 0.9609 0.9313
Image Segmentation Dermatology

MTConn7 798.4+ 877.1+ 0.6832+ 0.5886+ 42.28+ 377.1+ 0.946+ 0.9324+

MTIntra 25.39+ 869.5+ 0.6654+ 0.5717+ 3.176+ 376.2+ 0.8655+ 0.7915
VectorConn 797.1+ 873.8+ 0.6859+ 0.5894+ 41.7+ 382.8 0.9063+ 0.8764+

VectorIntra 25.38+ 872.2+ 0.6655+ 0.5726+ 3.063 380.9+ 0.8538 0.7839
k-means AF 24.78 908.6 0.6383 0.5582 3.022 386.5 0.8349 0.7569

fitness measure, however, gives very good results on the Dermatology dataset, improv-
ing performance over k-means significantly. The fact that different fitness functions
perform better on different datasets shows the usefulness of our proposed methods to
train using a range of criteria, unlike the original k-means algorithm. Both the multi-
tree and the vector approaches appear to perform similarly on the real-world datasets,
with an exception on the Iris dataset, where the vector approach is superior when
connectedness is used in terms of the external metrics.

5.2 Results on Synthetic Datasets

The GP methods continue to perform well compared to k-means on the synthetic
datasets. All four methods have a significantly higher F-measure value than k-means
on the datasets with 20 or 40 clusters. These datasets are the most difficult as they
require separating the dataset into the greatest number of distinct groups. k-means
performs very poorly when there is a large number of clusters (e.g. K = 40); GP is
able to effectively perform FC to significantly improve the performance of k-means
on the hardest datasets, while only using a small subset of the feature set. Some GP
methods perform significantly worse on the simple 10d10c and 50d10c datasets, but
at least one GP method is still significantly better than k-means in these cases.

The connectedness and
∑

Intra fitness measures are again superior on different
datasets. The method using connectedness are significantly better than k-means on
the 50d10c dataset, whereas those using

∑
Intra fitness are significantly worse. The

inverse is true on the 10d10c dataset, however. In general, the multi-tree approach
seems slightly better than the vector approach, especially on the datasets with highest
dimensionality such as 100d20c and 100d40c. Future testing is required to evaluate
which method is superior, and more work could be done to improve each method by
further exploring alternative representations or fitness functions.

Table 4: Performance on Synthetic Datasets.

Method Conn ↑ Intra ↓ Purity ↑ FM ↑ Conn ↑ Intra ↓ Purity ↑ FM ↑
10d10c 10d20c

MTConn 823.3+ 719.1− 0.9019− 0.7836− 177.0+ 213.2+ 0.9948+ 0.9919+

MTIntra 17.67− 710.1+ 0.9294 0.878 16.5+ 213.0+ 0.9948+ 0.9919+

VectorConn 827.3+ 713.9 0.9153− 0.8025− 177.0+ 213.5+ 0.9941+ 0.9887+

VectorIntra 18.05+ 706.3+ 0.9404+ 0.8926+ 16.48+ 213.5+ 0.9938+ 0.9906+

k-means AF 17.88 712.4 0.9291 0.8571 15.29 254.8 0.8732 0.7969
10d40c 50d10c

MTConn 173.2+ 406.5+ 0.9747+ 0.9311+ 589.4+ 1480.0− 0.7325− 0.5167+

MTIntra 16.34+ 405.0+ 0.977+ 0.9456+ 17.14− 1220.0+ 0.7392 0.4785−

VectorConn 173.6+ 403.3+ 0.9789+ 0.9409+ 587.3+ 1437.0− 0.7278− 0.5005
VectorIntra 16.32+ 404.1+ 0.9771+ 0.9494+ 17.22− 1216.0+ 0.7397 0.4795−

k-means AF 15.75 436.8 0.9182 0.8628 17.49 1317.0 0.744 0.4939
50d20c 50d40c

MTConn 163.3+ 583.2− 0.7138+ 0.4996+ 163.3+ 894.7− 0.685 0.4397+

MTIntra 17.43 493.8+ 0.7456+ 0.4776+ 18.95− 833.8+ 0.6952+ 0.4269+

VectorConn 162.5+ 555.7 0.7212+ 0.4832+ 165.4+ 850.4+ 0.7082+ 0.4106+

VectorIntra 17.52 487.2+ 0.7412+ 0.4351+ 19.3+ 797.1+ 0.7165+ 0.3759+

k-means AF 17.33 546.5 0.6868 0.3823 19.16 865.2 0.6791 0.2618
100d10c 100d20c

MTConn 521.8+ 2123.0− 0.7598 0.5311 126.0+ 885.4− 0.7084 0.4657+

MTIntra 15.81+ 1776.0+ 0.7835+ 0.5825+ 13.66+ 764.9+ 0.7481+ 0.4598+

VectorConn 519.5+ 2077.0− 0.7595 0.5446 125.5+ 850.5 0.7122 0.4451+

VectorIntra 15.89+ 1771.0+ 0.7839+ 0.5854+ 13.74+ 749.6+ 0.7466+ 0.4331+

k-means AF 15.14 1968.0 0.748 0.5255 13.31 844.2 0.7033 0.38
100d40c

MTConn 114.8+ 1234.0− 0.6963 0.4629+

MTIntra 14.18− 1118.0+ 0.7181+ 0.462+

VectorConn 116.0+ 1159.0 0.7142+ 0.4418+

VectorIntra 14.45 1061.0+ 0.7344+ 0.4028+

k-means AF 14.55 1184.0 0.6904 0.2675

6 Evolved Program Analysis

It is often useful when using GP to evaluate and analyse some of the high-performing
individuals produced during the evolutionary process. Doing so allows us to understand
what properties of a given tree allow it to perform well, which leads to a better under-
standing of the problem as well allowing the GP method to be improved further. In
addition, analysing evolved programs increases the confidence in our proposed method
by demonstrating how it is able to achieve the good results we claim. In this section,
we analyse a number of GP trees with high F-measure across a range of datasets.

An example of the multi-tree approach can be seen in Figure 1. The seven trees
produced by an individual with a very high F-measure value of 0.9947 is shown, along
with the constructed feature set generated which consists of seven features, one from
each tree. Of these trees, three are simply performing feature selection of a single
feature, two add a constant value to a single feature, and the remaining two are
performing more advanced FC. In total, seven of the original 10 features are used.
Although the dimensionality has not been greatly reduced, performance is still much
higher than that of the original k-means algorithm (which achieves an F-measure

(a) The evolved multi-tree GP individual with 7 trees.[
min(F6 + |0.97− F2|, F2), (0.86 + F3), F5, (0.3 + F0), F8, F6, min

(
(F9 + F3), F9

(0.38
F0

+F3)

)]
(b) Constructed feature set generated by the programs.

Fig. 1: An evolved individual on the 10d20c dataset using the multi-tree approach
(F-measure = 0.9947).

value of 0.7969). This further highlights the ability of GP to improve performance by
selecting the most important features, and creating more powerful high-level features.

Figure 2 shows a GP individual using the vector approach with high performance
on the hardest synthetic dataset (100d40c). The individual is a reasonably concise
tree, with a maximum width of eight nodes and a depth of seven. The tree itself
is shown in Figure 2a, and the output of the tree as shown in Figure 2b. The tree
selects feature values as terminal nodes, and outputs a constructed feature vector of
length 12, containing 11 “constructed” features and one constant value. Of these CFs,
one is an arithmetic combination of two selected features and two constants, two are
operations applied to a selected feature and a constant value, and the remaining nine
are unchanged selected features. k-means achieved an F-measure value of 0.2618 on
average; this GP individual produced nearly double the F-measure value while only
using 12 features compared to the 100 original features that k-means used. This large
increase in performance shows the power of GP in improving performance by creating
more powerful high-level features while also reducing dimensionality.

A useful property of the vector approach is its ability to dynamically produce a
variable number of CFs. For example, on the Iris dataset which has only three classes,
it is unnecessary to have seven CFs (as occurs for t = 7 in the multi-tree approach)
and having so many features may reduce the interpretability of the solution. Figure 3
shows a high performing, very simple GP individual produced on the Iris dataset. This
tree is very easy to analyse: it simply selects two of the four features in the dataset
(F3 and F2). By not selecting the other misleading or redundant features, this GP tree
significantly improves the ability of k-means to produce a good cluster partition.

7 Conclusion

This work showcased the ability of GP to be used for feature construction for clustering;
the performance of k-means was significantly improved by using GP to automatically
construct a few high-level features. We proposed two representations, using a multi-

(a) The GP tree.[
|(F45 × 0.85) + (F39 − 0.62)|, F11, F18, F12, F97, 0.6, F67, min(0.63, F23), F37

0.59 , F86, F85, F71

]
(b) Constructed feature set generated by the program.

Fig. 2: An evolved individual on the 100d40c dataset using the vector approach
(F-measure of 0.499).

(a) The GP
tree.

[
F3, F2

]
(b) Feature

set.

Fig. 3: An evolved individual on the Iris dataset with using the vector approach
(F-measure = 0.9233).

tree and a vector approach, and explored two potential fitness functions (connectedness
and

∑
intra fitness) that could be used for training high performing GP trees. Both

representations and fitness functions were shown to give significantly improved per-
formance compared to the base k-means algorithm across a range of real-world and
difficult synthetic datasets. A number of evolved GP trees were analysed and shown
to perform effective and efficient FC even in a very small tree.

As GP has seen little use in FC for clustering, there are many promising future
research areas that could be explored. The representations and fitness functions used
in this work could be further improved, and many other representations and fitness
functions are possible. For example, the vector approach could be adapted to directly
encourage shorter constructed feature vectors to be produced (thereby producing more
powerful CFs). The multi-tree approach would be improved if the number of trees could

be determined automatically — for example, using a heuristic based on K (a higher
number of clusters should genuinely mean more CFs are required). It may also be
worthwhile to investigate using other clustering algorithms besides k-means; while in
theory it is possible for GP to produce optimal CFs that k-means can use to produce
perfect partitions, other algorithms may be more powerful and perform well with a
wider range of CFs. The methods we proposed were all designed to work when K was
pre-defined, as k-means requires K to be known. This may be inflexible in practice —
extending these methods to automatically determine K would be beneficial.

References

1. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31(8)
(2010) 651–666

2. Garćıa, A.J., Gómez-Flores, W.: Automatic clustering using nature-inspired metaheuris-
tics: A survey. Appl. Soft Comput. 41 (2016) 192–213

3. J. A. Hartigan, M.A.W.: Algorithm AS 136: A k-means clustering algorithm. Journal of
the Royal Statistical Society. Series C (Applied Statistics) 28(1) (1979) 100–108

4. Liu, H., Motoda, H.: Feature extraction, construction and selection: A data mining
perspective. Springer Science & Business Media (1998)

5. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic program-
ming to classification. IEEE Trans. Systems, Man, and Cybernetics, Part C 40(2) (2010)
121–144

6. Koza, J.R.: Genetic programming: on the programming of computers by means of natural
selection. Volume 1. MIT press (1992)

7. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing
Series. Springer (2015)

8. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature construction
for symbolic learning classifiers using genetic programming. IEEE Trans. Evolutionary
Computation 16(5) (2012) 645–661

9. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection
in classification on high-dimensional data. Memetic Computing 8(1) (2016) 3–15

10. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for parti-
tional clustering. Swarm and Evolutionary Computation 16 (2014) 1–18

11. Aggarwal, C.C., Reddy, C.K., eds.: Data Clustering: Algorithms and Applications. CRC
Press (2014)

12. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA.
(1996) 226–231

13. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process.
Lett. 76(4-6) (2000) 175–181

14. Tseng, L.Y., Yang, S.B.: A genetic clustering algorithm for data with non-spherical-shape
clusters. Pattern Recognition 33(7) (2000) 1251–1259

15. Boric, N., Estévez, P.A.: Genetic programming-based clustering using an information
theoretic fitness measure. In: Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC). (2007) 31–38

16. Ahn, C.W., Oh, S., Oh, M.: A genetic programming approach to data clustering. In:
Proceedings of the International Conference on Multimedia, Computer Graphics and
Broadcasting (MulGraB), Part II. (2011) 123–132

17. Handl, J., Knowles, J.D.: An evolutionary approach to multiobjective clustering. IEEE
Trans. Evolutionary Computation 11(1) (2007) 56–76

18. Lichman, M.: UCI machine learning repository (2013)

