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ABSTRACT
Counterfactual explanation is a popular eXplainable AI technique,
that gives contrastive explanations to answer potential “what-if"
questions about theworkings of machine learningmodels. However,
research into how explanations are understood by human beings
has shown that an optimal explanation should be both selected
and social, providing multiple varying explanations for the same
event that allow a user to select specific explanations based on prior
beliefs and cognitive biases. In order to provide such explanations, a
Rashomon set of explanations can be created: a set of explanations
utilising different features in the data. Current work to generate
counterfactual explanations does not take this need into account,
only focusing on producing a single optimal counterfactual.

This work presents a novel method for generating a diverse
Rashomon set of counterfactual explanations using the final pop-
ulation from a Particle Swarm Optimisation (PSO) algorithm. It
explores a selection of PSO niching algorithms for PSO and evalu-
ates the best algorithm to produce these sets. Finally, the ability of
this method to be implemented and trusted by users is discussed.
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1 INTRODUCTION
Explainable AI [29] (XAI) is a field of AI that explores the idea of
producing explanations for predictions made by AI systems. There
are many forms that these explanations can take, whether they are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590444

explaining the workings of the model, approximations of how a pre-
diction was made, or describing the use of individual data features.
One such method of producing explanations is Counterfactual ex-
planation. Counterfactual explanation is a post-hoc explanation
technique, explaining a specific prediction after the prediction has
beenmade by amachine learning (ML) model. They take the form of
a counterfactual argument [19], stating what changes would need
to be made to the original input to produce a different, more desired
output [10]. Such explanations have many uses, from explaining
credit application decisions [26] to ensuring regulations such as
the GDPR are followed [10]. Counterfactual explanations can be
difficult to produce when explaining black-box models because the
decision boundaries of these models can be very complex [1].

One major shortcoming of existing counterfactual algorithms
[18, 31] is that they produce a single alternative to the original
input. However, when considering explanation at the human level,
it is known that an optimal explanation is both selected and social
[27]. These real-world requirements for the adoption and use of
explanation techniques cannot be met by current algorithms. The
challenge ofmeeting these requirements is inherently amulti-modal
optimisation problem, as many different contrasting explanations
could sufficiently explain the prediction to a user at the same level
of fidelity. From a collection of explanations, each user should be
provided with the most appropriate explanation for their individual
experiences and beliefs. Borrowing from the field of statistics [2],
the full set of optimal explanations is known as a Rashomon set [9].

Previous research [36] has shown that population-based algo-
rithms are strong contenders for counterfactual generation. A key
benefit of these algorithms is that they can treat the underlying
model as a complete black-box, unlike counterfactual algorithms
that rely on specific model types [18, 23]. This allows for much
more flexibility in applying the explanation algorithm, allowing a
user or organisation to use it without needing to change the overall
ML framework they are already working with.

Particle Swarm Optimisation (PSO) [17] is one such population-
based optimisation method. It consists of a number of particles that
represent solutions, and these particles explore the search space
to find the most optimal solutions. It is suitable for many tasks as
it makes no assumptions about the underlying data landscape; it
has been shown to be a highly performant algorithm for the task
of counterfactual production [1]. However, previous research has
only explored the production of a single counterfactual with PSO,
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which does not meet the requirements for real-world adoption of
the explanation method.

Niching effects are often used in PSO to solve multi-modal prob-
lems [24]. Due to the population-based nature of the algorithm,
different areas of the particle swarm can focus on and optimise
different solutions to the problem. There are many different ap-
proaches adopted, from implicitly encouraging population diversity
due to the structure of the swarm to explicitly defining niches. As
PSO has previously been shown to produce strong counterfactual
explanations, applying niching to the process should provide a
strong Rashomon set of explanations.

There are many considerations and challenges in producing a
Rashomon set of counterfactual explanations. First, a Rashomon set,
by definition, requires there to be diverse and conflicting explana-
tions contained within it. However, many optimisation algorithms
will not preserve this diversity, producing a Rashomon set with
minimal variation. In addition, the Rashomon set must be generated
so that there is strong diversity in the set, but is not overly bloated
with similar explanations. Finally, as counterfactual explanations
usually aim to produce a specified output, a large portion of the
potential search space consists of invalid solutions to the optimi-
sation problem. In order to focus on these challenges, this paper
will only consider classification datasets with real-valued features.
However, future work will explore other types of tasks.

This paper introduces a novel technique to generate diverse
Rashomon sets of counterfactual explanations for predictions made
by black-box models, integrating multiple different niching PSO
algorithms into the method to identify the best possible algorithm.
The specific goals of this research are to:
• propose a new approach to generate Rashomon sets of coun-
terfactual explanations from the final PSO population;
• evaluate the proposed approach using a selection of niching
PSO algorithms on various datasets to find the best approach
for producing a diverse Rashomon set;
• evaluate and discuss the proposed approach in terms of ap-
plication in the real-world.

2 BACKGROUND
2.1 Optimal Explanations
In supervised ML, it can be simple to determine an optimal predic-
tion. For example, many optimisation problems seek to achieve the
lowest or highest possible result on a given function or task [35].
The closest equivalent to this in XAI, especially post-hoc explana-
tions, is fidelity. This is a measure of how closely an explanation
matches the actual prediction made by an ML model [33].

However, this is challenging to measure for explanation methods,
as explanations must be made with the end user in mind [29]. To
this end, Miller et. al. [28] introduced a number of general consider-
ations that should be taken in mind when designing an explanation
algorithm [27]. To quickly summarise these considerations:
• Explanations are contrastive. An explanation should describe
why an outcome happened instead of another outcome,
rather than just explaining the outcome [11].
• Explanations are selected. An explanation will be unlikely to
be accepted if it describes every possible cause of an outcome,
as it is too much for a person to understand properly. Instead,

it should select only a few causes that explain most of the
outcome [13]. In addition, the selected causes should be in
line with a person’s cognitive biases and prior beliefs.
• Probabilities often do notmatter. People are often not looking
for the “most correct" explanation, instead preferring one
that is consistent with prior beliefs. This is true even if they
are told that the probability of the cause is lower [13, 25].
• Explanations are social. In the hypothetical perfect scenario,
the explanation should be provided as part of a conversation
or interaction [12]. This allows the explanation to be tailored
to the person who the explanation is created for.

2.2 Rashomon Sets
While the idea of the Rashomon effect exists in many fields, it
was first introduced in the context of statistics by Breiman in 2001
[2]. They defined the Rashomon effect as the existence of multiple
different functions 𝑓 (𝑥) such that each function gives about the
same minimum error rate on a given task. Despite each function
using different variables in the data and therefore conflicting with
each other, they must all be taken as correct in the absence of extra
information. This concept is easily transferred to the context of
XAI: given a model to predict a result on a task, there can exist
many different and equally correct explanations for that model.

In 2019, Fisher et al. extended the Rashomon effect to the idea
of a Rashomon set [9]. Given the set of all possible models𝑀 , the
Rashomon set is the subset of models 𝑅 ⊆ 𝑀 such that each element
𝑟 ∈ 𝑅 performs similarly to the best-performing model in𝑀 .

While the idea of the Rashomon effect has been criticised as a
weakness of a badly defined problem [4], it has also been shown that
the Rashomon effect can be used to discover unknown information
patterns in the data [9] and to navigate trade-offs between desired
model properties such as interpretability [34].

As discussed in Section 2.1, explanations should be selected
and social to be able to be accepted by a user. A Rashomon set of
explanations allows meets these criteria, as each explanation in the
set can utilise different features in the data, allowing the correct
explanation to be chosen by the user based on their prior beliefs.
This is reinforced by the fact that probabilities often do not matter
for explanation — even if one model in the set has a higher fidelity
than the others, the other explanations may still be valid.

2.3 Counterfactual Explanations
Counterfactual explanations, first proposed by Watcher et al. [39],
are statements of what changes would need to be made to an origi-
nal input instance to produce a different output from an ML model.
In terms of real-world use of counterfactual explanations, this dif-
ferent output is one that would be more preferred by a user — for
example, a user could want to know what changes they could make
in their lifestyle in order for a rejected loan application to be ac-
cepted. As with many explanation algorithms, the fidelity of the
explanation is important as an optimal counterfactual should be as
close as possible to the original instance. Figure 1 shows an example
of different counterfactuals produced for a data point, changing
the predicted class from A to B. It can be observed that there are
multiple possible counterfactual explanations for a single predic-
tion. These may modify different subsets of all the possible features
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Figure 1: Counterfactual explanation example. A counter-
factual can be produced by modifying one of each of the
features or by modifying both of them. Modified from [1]

(dimensions in the search space). In this example, the set of expla-
nations {1, 2, 3} represents a Rashomon set of explanations where
explanations 1 and 3 each only modify a single feature and expla-
nation 2 modifies both features, but each by a lesser magnitude.

Counterfactual explanation is a useful post-hoc explanation
method as it can provide a contrastive explanation, which, as dis-
cussed above, has been shown to be more effective and understand-
able to users [27]. In addition to this, it has been shown to fulfil the
‘right to explanation’ of the European GDPR data regulations [39].

In counterfactual generation, there are different definitions for
“as close as possible to the original instance". This is usually taken
as either the Euclidean distance or the Manhattan distance [10].
However, it is generally believed that the fewer features modified,
the more likely the counterfactual is to be accepted by a user [27].
This means that theManhattan distance, also known as the 𝐿1 norm,
is usually used. This is due to the sparsity-inducing properties of
the 𝐿1 norm [3, 6], which will push the individual differences of as
many features as possible to be zero. Eq. (1) gives the Manhattan
distance 𝑑 between two points 𝐹1 and 𝐹2.

𝑑 =

𝑑𝑖𝑚 (𝐹 )∑︁
𝑖=1

|𝐹1𝑖 − 𝐹2𝑖 | (1)

Counterfactual explanations are often considered a full explana-
tion of a prediction [5, 16], although they can also be used as a tool
to discover more information about specific data or models [36, 41].

To clearly formulate the task of counterfactual explanation as
an optimisation task, the goal is to find the optimal point 𝑐 in the
data landscape such that using it as an input to a trained classifi-
cation model𝑚 produces a desired prediction class 𝑡 . An optimal
explanation is defined as the valid point that minimises 𝑑 between
the original point 𝑜 and 𝑐 . This problem is formulated as given in
Eq. (2), where 𝑐∗ is the optimal counterfactual explanation.

𝑐∗ = argmin
𝑐

𝑑 (𝑜, 𝑐) |𝑚(𝑐) = 𝑡 (2)

While there is no current standardised method of evaluating
counterfactual algorithms in the literature, a common approach,
using a classification dataset, is to first train a classification model
on the data and then select a number of random instances in the data

to produce explanations for. These explanations can be evaluated
on a number of metrics, including but not limited to the 𝐿1, 𝐿2, and
𝐿∞ norms, the number of features modified, and the feasibility of
the counterfactual as a real data point [1, 5, 16].

2.4 Particle Swarm Optimisation
Particle Swarm Optimisation (PSO) [17] is a form of evolutionary
computation, representing solutions as individual particles in a
swarm. Each particle is represented as a vector of values, where
the value in position 𝑖 represents the position of the particle in the
𝑖𝑡ℎ data dimension. Similarly, each particle has a velocity through
the data space, which is another vector of values. Through these
vectors, the full representation of a particle is given as
( [𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝐷 ], [𝑣1, 𝑣2, 𝑣3, ..., 𝑣𝐷 ]) where 𝑥𝑖 and 𝑣𝑖 give the posi-
tion and velocity along dimension 𝑖 , and 𝐷 is the total number of
dimensions in the data.

At each algorithmic step, each particle moves through the search
space, being pulled towards both the best position that the particle
has found so far in the data (𝑝𝑏𝑒𝑠𝑡 ) and the best position found by
the full swarm in the data (𝑔𝑏𝑒𝑠𝑡 ). At each step, every particle 𝑖 is
updated according to Equations (3) and (4), where 𝑡 represents the
𝑡𝑡ℎ step in the search process, 𝑟1 and 𝑟2 are random vectors sampled
from U(0, 1), and𝑤 , 𝑐1, and 𝑐2 are provided constants.

𝑥𝑡+1𝑖 = 𝑥𝑡𝑖 + 𝑣
𝑡+1
𝑖 (3)

𝑣𝑡+1𝑖 = 𝑤 · 𝑣𝑡𝑖 + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡
𝑡
𝑖 − 𝑥

𝑡
𝑖 ) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑡𝑖 ) (4)

The constant 𝑤 refers to the inertia weight of the algorithm.
𝑤 is used to balance the exploration of new solutions with the
exploitation of already discovered good solutions. The constants 𝑐1
and 𝑐2 refer to acceleration constants and are used to balance the
contributions of pbest and gbest.

2.5 Niching PSO
Multi-modal optimisation is the task of solving problems for which
there are more than one global or local optima, where it is often
desired to find all of these optima. This is consistent with the idea
of selected explanations: each potential explanation — that utilises
different features — is a different optimum that must be found.

PSO has been shown [8] to be a competitive approach on multi-
modal problems, with many niching algorithms proposed to im-
prove performance in this task. Four commonly used niching PSO
algorithms [22] are SPSO [30], E-SPSO [22], FER-PSO [20], and PSO
with a ring topology [21]. Each of these algorithms replaces the
𝑔𝑏𝑒𝑠𝑡 in Eq. (4) with a different particle to encourage unique niches
of particles optimising in different areas of the search space.

2.5.1 SPSO. Species-based PSO (SPSO) [30] incorporates speciation
of particles in the PSO algorithm. It introduces the species radius
(𝑟𝑠 ) as a hyperparameter. At every algorithmic step, a set of species
is identified. First, the population is sorted by fitness. Then, a set of
seeds for each species is initialised, and each particle is considered
in turn: a particle is added to the first species for which it is less
than 𝑟𝑠 away from the corresponding seed. If it is not added to
any species, it is added to the set of seeds and forms a new species.
Once each species seed has been found, the global best in Eq. (4) is
replaced with the seed from the species that particle 𝑖 belongs to.
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In addition to this, SPSO introduces a mechanism for replacing
redundant particles in the population. Any particles in the popula-
tion with the same fitness as their species’ seed are removed, and
random new particles are generated to replace them.

2.5.2 E-SPSO. E-SPSO [22] is an extension of SPSO that incorpo-
rates an equilibrium factor into the algorithm. It first performs the
same process as SPSO in order to find each species seed, then finds
the largest species 𝐿𝑁 and the smallest species 𝑆𝑁 . It then takes
the average size 𝐷𝑆 of these two species and adds an extra term in
Eq. (4) to the 𝐷𝑆 worst particles in 𝐿𝑁 that encourages the velocity
of each particle towards the seed of 𝑆𝑁 . This helps to prevent the
largest species from becoming too large.

E-SPSO also utilises the local search algorithm for PSO suggested
by Qu et al. [32]. At each algorithmic step, the nearest personal best
𝑝𝑏𝑒𝑠𝑡_𝑛𝑒𝑎𝑟𝑒𝑠𝑡 to the 𝑝𝑏𝑒𝑠𝑡 for each particle is found. A new random
temporary particle is created that is slightly closer to 𝑝𝑏𝑒𝑠𝑡_𝑛𝑒𝑎𝑟𝑒𝑠𝑡
from 𝑝𝑏𝑒𝑠𝑡 . If the fitness of this new particle is better than that of
𝑝𝑏𝑒𝑠𝑡 , it replaces 𝑝𝑏𝑒𝑠𝑡 as the personal best of that particle.

2.5.3 FER-PSO. PSO based on Fitness Euclidean-distance Ratio
(FER) [20] considers the personal best particles as a memory swarm
and the current positions of the particles as an explorer swarm.𝑔𝑏𝑒𝑠𝑡
is replaced by the fittest and closest neighbourhood best of particle 𝑖
in the swarm. This neighbourhood best is the particle in thememory
swarm which has the highest 𝐹𝐸𝑅 value. The 𝐹𝐸𝑅 value between
𝑖 and each other particle 𝑗 is the ratio of the difference in fitness
between 𝑖 and 𝑗 and the Euclidean distance between 𝑖 and 𝑗 .

Unlike the SPSO methods that define a niche per particle, the re-
placement for 𝑔𝑏𝑒𝑠𝑡 in FER-PSO is more fluid. Each particle instead
finds its own individual replacement based on the 𝐹𝐸𝑅 values.

2.5.4 Ring Topology. PSO with a ring topology [21] is a simpler
method than the SPSO and FER-PSO methods, simply restricting
the connections between particles. Despite this, it has been shown
to perform competitively with the more complex methods. The ring
topology restricts each particle so it only knows of two neighbour-
ing particles in the swarm. The global best 𝑔𝑏𝑒𝑠𝑡 is then replaced in
Eq. (4) by a local best 𝑙𝑏𝑒𝑠𝑡 , the best particle found by either the par-
ticle or its two neighbours. This creates implicit niching properties
without the explicit niching provided by the other methods.

2.6 Related Work
There is, to our knowledge, no existing work to produce sets of
counterfactual explanations using PSO. We previously [1] showed
that PSO is a competitive method for producing counterfactual
explanations; however, this only focused on producing a single
counterfactual explanation and did not utilise the innate ability of
PSO to produce multiple diverse solutions.

Dandl et al. [5] explored the generation of sets of counterfactual
explanations using the NSGA-II algorithm, treating the explanation
as a multi-objective problem. They treated the objectives as the
explanation fidelity, the number of features modified, and how well
the counterfactual would fit the original data distribution. While
this does provide a good set of explanations, this is only explored
in the context of trade-offs between these multiple objectives and
does not consider that for the purposes of explanation, it is desired
to have multiple different but similarly performing explanations.

3 PROPOSED METHOD
The proposed approach is to use niching PSO algorithms to generate
a population of PSO particles representing counterfactual explana-
tions for a provided black-box model𝑚. While a multi-objective
solution was considered, these only provide trade-offs between
objectives and do not allow for the creation of multiple different
solutions in the final solution set that exhibit similar results for each
objective. Instead, the final population of particles from a niching
PSO algorithm is used to allow for these similar trade-offs.

Each counterfactual explanation (solution) is represented as a
real-valued feature vector, with the same dimensionality as the data
used to train𝑚. In order to enforce that each feature is considered
equally, and simplify some equations, every feature is scaled to be
within the range [0, 1]. If𝑚 is trained without this scaling applied,
the data is reverted to the original range before it is passed into𝑚.

The fitness for an individual counterfactual is measured as the
Manhattan distance 𝑑 between the counterfactual and the original
input data. This is consistent with prior work [1, 10] and encourages
the algorithm to significantly change as few features as possible.

The optimisation goal of the algorithm is to produce a set of
valid counterfactuals. A valid counterfactual is defined as one that
modifies the prediction of𝑚 from the original class to a specified
class 𝑡 and is within the specified range of [0, 1]. Mathematically
this can be given by Eq. (5), where 𝐶 is the set of all possible valid
counterfactual explanations and 𝑜 is the original input instance.

𝐶 = {𝑐1..𝑛 |𝑛 = 𝑑𝑖𝑚(𝑜),𝑚(𝑐) = 𝑡,∀𝑐𝑖 : 𝑐𝑖 ∈ [0, 1]} (5)

As the PSO algorithm performs its own bounds checking by
moving any particle outside the defined search space back to the
edge of the search space, the only consideration needed in this cus-
tom algorithm is how to handle a solution for which𝑚(𝑐) predicts
a class other than the target class 𝑡 . As the PSO algorithm does
not require a differentiable fitness landscape and only particularly
depends on the best position found by each particle, an invalid
particle can be assigned with a marker for invalid fitness. In this
paper, that marker is an arbitrarily large value, denoted as∞. The
fitness of a given particle 𝑐 is calculated according to Eq. (6). This
is the function which the PSO algorithms aim to minimise.

𝑓 (𝑐) =
{∑𝑑𝑖𝑚 (𝑜 )

𝑖=1 |𝑜𝑖 − 𝑐𝑖 | 𝑚(𝑐) = 𝑡

∞ 𝑚(𝑐) ≠ 𝑡
(6)

Algorithm 1 is used to generate a final population of counterfactual
particles. This algorithm takes a pre-trained model 𝑚, a desired
counterfactual class 𝑡 , and an original input 𝑜 (from the data). For a
specified number of iterations, each particle is updated according
to the best position it has found so far and a global/neighbourhood
best based on the niching technique used. Lines marked with 𝛼 are
used for normal PSO, with 𝛽 for SPSO, with 𝛾 for E-SPSO, with 𝛿

for FER-PSO, and lines marked with 𝜖 are used for a ring topology.
Once the final PSO population has been evaluated, a Rashomon

set of explanations is created from the results, as shown in Figure 2.
First, each particle in the population is replaced by their 𝑝𝑏𝑒𝑠𝑡 , the
best position that particular particle has found. For each particle,
the specific features that are significantly modified to generate the
counterfactual, here defined as a feature that is more than 0.01 away
from the value in the original instance, are found. This represents a
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Algorithm 1: PSO algorithm for counterfactual generation,
with modifications for various niching algorithms
Parameters :𝑤 , 𝑐1, 𝑐2
Data:𝑚 model to be explained, 𝑜 point to be explained, 𝑡

desired prediction
1 generate population randomly, sampled from U(0, 1);
2 𝑔𝑏𝑒𝑠𝑡 ←∞;
3 for particle in population do
4 𝑝𝑏𝑒𝑠𝑡 ←∞;
5 𝑣 ← random values from U(0, 0.5);
6 end
7 for desired number of iterations do
8 for particle in population do
9 if 𝑚(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒) is 𝑡 then
10 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝑑 (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 𝑜) (Eq. (1));
11 else
12 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ←∞;
13 end
14 if fitness < 𝑝𝑏𝑒𝑠𝑡 then
15 𝑝𝑏𝑒𝑠𝑡 ← particle;
16 end
17 if fitness < 𝑔𝑏𝑒𝑠𝑡 then
18 𝑔𝑏𝑒𝑠𝑡 ← particle;
19 end
20 end
21 𝛽,𝛾 : find species seed for each particle based on fitness

and position;
22 for particle in population do
23 𝛼 : update 𝑣 by Eq. (4);
24 𝛽 : update 𝑣 by Eq. (4) replacing 𝑔𝑏𝑒𝑠𝑡 with species

seed;
25 𝛾 : update 𝑣 by Eq. (4) replacing 𝑔𝑏𝑒𝑠𝑡 with species

seed and including equilibrium factor;
26 𝛿 : 𝑓 𝑒𝑟𝑏𝑒𝑠𝑡 ← 𝑝𝑏𝑒𝑠𝑡 of different particle that

maximises 𝐹𝐸𝑅 value;
27 𝛿 : update 𝑣 by Eq. (4) replacing 𝑔𝑏𝑒𝑠𝑡 with 𝑓 𝑒𝑟𝑏𝑒𝑠𝑡 ;
28 𝜖 : 𝑙𝑏𝑒𝑠𝑡 ← best of 𝑝𝑏𝑒𝑠𝑡 of particle and neighbours;
29 𝜖 : update 𝑣 by Eq. (4) replacing 𝑔𝑏𝑒𝑠𝑡 with 𝑙𝑏𝑒𝑠𝑡 ;
30 update particle according to Eq. (3);
31 end
32 𝛽 : replace redundant particles in the population;
33 𝛾 : perform local search for each particle;
34 end
35 return full population;

change of more than 1% of the range of the data. This is represented
in Fig. 2 as a bit vector, where a 1 represents a significant change and
a 0 represents no significant change. For every unique combination
of features modified, the particle with the best fitness is found. The
Rashomon set is then taken as each of these best particles. This
means that the Rashomon set is made of the explanations that are
most similar to the original prediction while also balancing the
ability to produce a diverse set of solutions.
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Figure 2: An example of reduction from a final population
of results to a Rashomon set.

4 EXPERIMENTAL DESIGN
4.1 Datasets
Nine datasets were selected to evaluate the proposed methods.
Seven were sourced from the UCI machine learning repository [7],
one (kc2) from the OpenML platform [38], and the final dataset
(Penguins) is from an online R repository [14]. These datasets each
present classification tasks that operate over a continuous data
domain, providing a good analogue for a real-world task requiring
counterfactual explanations. Table 1 shows the selected datasets,
ordered by the (approximate) complexity of the task.

Two particular datasets that are worth highlighting are the Seg-
mentation dataset and the Ionosphere dataset. Both of these datasets
initially contained one feature for which every instance had the
same value. As it would be problematic for a counterfactual to have
the option to modify these features, they have been removed.

4.2 Experiment Setup
To explore the ability of various niching PSO algorithms in creating
diverse Rashomon sets of counterfactual explanations, we compared
with basic PSO. For each algorithm, standard PSO parameters of
𝑤 = 0.7298, 𝑐1 = 1.4962, and 𝑐2 = 1.4962 are used [37]. For the two
species-based algorithms, the species radius 𝑟𝑠 is set to 1.0. Our
method is designed to be easily implemented in an existing ML
setup, and so we did not tune the parameters for each problem.

For each niching PSO algorithm, the following steps are taken:

(1) Scale the input data so that each feature is in the range [0, 1].
(2) Train a black-box model on the provided training data. While

a random forest classifier is used for these experiments, any
black-box model could be used.

(3) Select a single random instance from the data.
(4) Use the black-box model to predict the class of the instance.
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Table 1: Chosen datasets

Name Features Instances Classes
Penguins 4 333 3
Breast Cancer Wisconsin (BCW) 10 699 2
Wine 13 178 3
Segmentation 18 2310 7
kc2 21 522 2
Steel Plates Faults (SPF) 27 1941 2
Ionosphere 33 351 2
Dermatology 34 366 6
Madelon 500 4400 2

(5) Choose a class in the data that was not predicted by the
original instance.

(6) Apply the PSO algorithm in Algorithm 1 to find a final pop-
ulation, treating 𝑡 as the class selected in Step 5.

(7) Create a Rashomon set of explanations as shown in Fig. 2.
(8) Record statistics on the Rashomon set size, the size of the

explanations, and the 𝐿1 and 𝐿2 norms of the explanations.
(9) Repeat from Step 5 until a Rashomon set has been produced

for each class apart from the original prediction.
(10) Repeat from Step 3 20 times, using the same black-box model

but a different chosen instance.
Thus, each instance has a Rashomon set created for each other

possible class. While this means that more sets will be created for
datasets with greater numbers of potential classes, it is important as
it lessens the statistical impact of any false-positive results where
strong performance is reported simply because two classes are
represented by very similar data in the overall dataset. Likewise,
each black-boxmodel is usedmultiple times to ensure results are not
biased by the original instances chosen. Both the black-box model
training and the instance selection use a specified randomisation
seed. This ensures that the same instances in the same models are
explained between each algorithm to provide a fair evaluation.

To provide strong statistical significance to the results in a non-
deterministic environment, each algorithm and dataset undergoes
the above steps 30 times with 30 different random seeds.

This paper only evaluates PSO-based methods of producing
Rashomon sets of counterfactual explanations, as no other algo-
rithms in the literature focus on producing a Rashomon set of coun-
terfactual explanations. Any EC algorithm such as the GA method
used by Sharma et al. [36] could be used to generate Rashomon sets,
however, we build on our prior work that showed PSO outperforms
other EC algorithms for counterfactual production.

5 RESULTS AND DISCUSSION
As a simple example of a counterfactual explanation produced: on
the Penguins dataset it was discovered that if the bill length of
an Adelie penguin was increased by 5.95cm it would instead be
classified as a Chinstrap penguin by the prediction model.

The quantitative results of the experiments are shown in Ta-
ble 2. For each combination of dataset and algorithm, the table first
shows the mean size of the produced Rashomon sets. Additionally,
it shows the mean of the average, best, and worst counts of fea-
tures modified within each set, and the same for the Manhattan
(𝐿1) and the Euclidean (𝐿2) distances from the original instance to
the counterfactual explanations. While Euclidean distance is not

utilised in the algorithm itself, it represents the most natural hu-
man understanding of distance [40]. The Manhattan distance can
also be heavily influenced by having too many features. Thus, the
Euclidean distance gives a more pure metric for distance from the
original instance.

The set size of the Rashomon set is taken as a measure of the
diversity of the final solution. This is because each solution in the
final Rashomon set utilizes a different selection of features from
the full feature set. Each of these unique combinations of features
can be taken as a distinct local optima in the optimisation task of
producing counterfactual explanations.

A Friedman test followed by post-hoc Nemenyi tests is performed
for each of the metrics, with a 𝛼 of 0.05. For each metric, a ↑ is
shown, and the result is bolded if it is statistically significantly
better than each other algorithm, and a ↓ is shown, and the result
is italicised if the result is statistically significantly worse than each
other algorithm. For the purposes of these, a larger final Rashomon
set is considered better, as it gives more variety in solutions. For all
other metrics, a lower value is considered better.

5.1 Analysis
Table 3 shows the number of wins and losses each algorithm has
across each metric, where wins are bolded and losses are italicised
to match Table 2. A win or a loss is only recorded if it is statistically
significantly better or worse than all four other algorithms.

From this table, some clear patterns begin to emerge. In terms
of producing the largest possible Rashomon set, and therefore the
most diverse set of solutions, SPSO is a clear winner, winning by a
large margin in all but MADELON, the largest and most complex
dataset. In addition to this, SPSO only has three clear losses across
the entire suite of experiments. This means that in cases where
strong diversity is desired, SPSO is potentially the best choice of
algorithm. However, closer analysis shows that while SPSO has
very few losses, in many cases, it performs significantly worse than
the best algorithm for that metric and generally has performance
closer to that of the worst-performing algorithm.

FER-PSO has 22 wins across all metrics, whereas the ring topol-
ogy has 23 wins; neither method has any losses. This means that for
creating Rashomon sets of high-fidelity explanations, these are the
two best algorithms to use. Between these two algorithms, FER-PSO
creates less diverse Rashomon sets with smaller sizes in almost all
datasets; however, it beats the ring topology more often in terms
of the worst solutions in the Rashomon set. Essentially, this means
that FER-PSO creates less diverse sets but with the trade-off of a
better performance floor within the sets. Additionally, FER-PSO
performs better than the ring topology on the two more complex
datasets, dermatology and MADELON.

E-SPSO has the worst performance, losing on a majority of met-
rics. In this problem, especially on multi-class datasets, there tends
to be a large area of the data space that produces invalid solutions
due to𝑚(𝑥) producing a different class than the target class 𝑡 . As
the equilibrium factor in E-SPSO does not check where the loca-
tions of the smallest and largest species are, it is very likely that it
simply pushes a number of particles within the invalid portion of
the data space. This slows down the algorithm and loses some of
the benefits provided by the speciation mechanism of SPSO.
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Table 2: Experimental results. The best algorithm for each metric is marked with a ↑ and the worst is marked with a ↓

Dataset Method Set Size Features modified 𝐿1 𝐿2
Average Best Worst Average Best Worst Average Best Worst

Penguins

PSO 2.25↓ 1.99 1.61 2.37 0.343 0.274 0.449↑ 0.274 0.228 0.343↑
SPSO 7.35↑ 2.69 1.44 4.0 0.374 0.277 0.635 0.292 0.224 0.46
E-SPSO 3.06 3.38↓ 3.0↓ 4.0 0.849↓ 0.674↓ 1.06↓ 0.56↓ 0.443↓ 0.693↓
FER-PSO 2.7 1.97 1.45 2.5 0.345 0.271 0.462 0.276 0.221 0.356
Ring Topology 3.68 2.02 1.4 2.72 0.346 0.273 0.477 0.277 0.22↑ 0.37

BCW

PSO 5.63↓ 5.09 3.14 5.74 1.31 0.659 1.8 0.631 0.413 0.798
SPSO 71.8↑ 7.42 4.06 10.0 2.86 1.07 5.34 1.29 0.557 2.1
E-SPSO 28.5 7.88↓ 6.21↓ 9.83 4.39↓ 2.59↓ 6.41 1.8 1.27↓ 2.29
FER-PSO 6.09 5.0 2.93↑ 5.8 1.31 0.629 1.81 0.632 0.4 0.808
Ring Topology 14.2 5.43 3.51 7.22 1.41 0.856 2.07 0.68 0.432 0.953

Wine

PSO 5.61 4.99 2.89 6.02 1.02 0.476 1.6 0.478 0.328 0.649
SPSO 57.6↑ 11.0 8.91 13.0 3.42 1.95 5.24 1.25 0.729 1.79
E-SPSO 12.2 12.0↓ 11.2↓ 13.0 4.47↓ 3.47↓ 5.64 1.49 1.17↓ 1.82↓
FER-PSO 5.69 4.83 2.7 5.86 0.986 0.44 1.57 0.461 0.309 0.632
Ring Topology 13.5 4.97 2.31↑ 7.71 0.961↑ 0.453 1.85 0.457 0.287↑ 0.727

Segmentation

PSO 12.6↓ 10.5 6.22 12.2 3.15 1.2 4.69 1.06 0.573 1.43
SPSO 88.4↑ 15.5 12.3 18.0 5.76 3.26 9.0 1.8 1.1 2.56
E-SPSO 21.8 16.7↓ 15.4↓ 18.0 7.36↓ 5.57↓ 9.34↓ 2.11↓ 1.66↓ 2.56↓
FER-PSO 12.9 10.3 5.87↑ 12.0 3.09 1.11↑ 4.69↑ 1.03 0.53↑ 1.42↑
Ring Topology 25.9 9.92 6.08 13.5 2.91↑ 1.43 5.13 0.999 0.584 1.54

kc2

PSO 2.76 6.08 5.11 6.75 0.86 0.377 1.31 0.279 0.179 0.377
SPSO 148.0↑ 16.8 11.7 20.8 6.28 2.4 13.2 1.98 0.926 3.37
E-SPSO 43.7 18.3↓ 14.7↓ 20.9 14.0↓ 9.13↓ 17.2↓ 3.52↓ 2.78↓ 3.96↓
FER-PSO 2.69 5.66 4.65 6.38 0.835 0.351 1.3 0.262 0.161 0.364
Ring Topology 13.3 4.7 2.49↑ 6.7 1.11 0.33↑ 2.04 0.321 0.136↑ 0.538

SPF

PSO 1.18 4.81 4.66 4.96 0.569 0.523 0.634 0.316 0.305 0.331
SPSO 329.0↑ 23.7 18.8 27.0↓ 9.7 5.45 15.3 2.43 1.48 3.46
E-SPSO 41.2 23.9 21.6↓ 26.4 14.6↓ 11.6↓ 18.2↓ 3.33↓ 2.82↓ 3.86↓
FER-PSO 1.25 4.19 4.02 4.36 0.387 0.346 0.439 0.211 0.201 0.223
Ring Topology 22.9 2.18↑ 1.583↑ 4.52 0.109↑ 0.0417↑ 0.317↑ 0.0525↑ 0.0218↑ 0.136↑

Ionosphere

PSO 1.34 7.51 6.85 7.94 1.53 1.3 1.72 0.704 0.663 0.737
SPSO 342.0↑ 28.3↓ 22.4 33.0↓ 9.74 6.28 13.5 2.22 1.52 2.87
E-SPSO 29.2 28.0 26.3↓ 30.5 12.8↓ 10.3↓ 16.6↓ 2.76↓ 2.31↓ 3.37↓
FER-PSO 1.52 6.65 5.95 7.05↑ 1.2 0.959 1.39 0.568 0.521 0.605
Ring Topology 60.6 5.12↑ 1.85↑ 11.5 0.53↑ 0.317↑ 1.12 0.297↑ 0.194↑ 0.504

Dermatology

PSO 43.8 21.0 14.5 23.4 8.46 5.01 11.6 1.97 1.43 2.49
SPSO 314.0↑ 28.5 17.9 34.0 12.7 7.63 18.0 2.82 1.94 3.65
E-SPSO 79.6 31.7↓ 28.3↓ 33.8 15.0↓ 10.9↓ 19.5↓ 3.09↓ 2.4↓ 3.82
FER-PSO 43.8 20.9 14.4↑ 23.2↑ 8.36↑ 4.86↑ 11.5↑ 1.92↑ 1.36↑ 2.45↑
Ring Topology 59.8 22.0 16.9 25.2 8.71 5.89 11.8 1.96 1.45 2.51

MADELON

PSO 500.0 347.0 334.0 370.0 60.1 59.6 64.9 4.81 4.8 4.96
SPSO 500.0 490.0 478.0 498.0 153.0 123.0 226.0 8.01 6.7 10.9
E-SPSO 184.0↓ 496.0↓ 491.0↓ 500.0↓ 212.0↓ 192.0↓ 247.0↓ 10.2↓ 9.35↓ 11.6↓
FER-PSO 500.0 340.0↑ 323.0↑ 372.0 45.7↑ 44.7↑ 53.8↑ 3.93↑ 3.9 4.23↑
Ring Topology 500.0 463.0 444.0 481.0 65.4 59.8 76.5 4.05 3.67↑ 4.62

Table 3: Wins and Losses by Method and Metric

Method Set Size Features modified 𝐿1 𝐿2
Average Best Worst Average Best Worst Average Best Worst

PSO 0/3 0/0 0/0 0/0 0/0 0/0 1/0 0/0 0/0 1/0
SPSO 8/0 0/1 0/0 0/2 0/0 0/0 0/0 0/0 0/0 0/0
E-SPSO 0/1 0/7 0/9 0/1 0/9 0/9 0/7 0/7 0/9 0/7
FER-PSO 0/0 1/0 4/0 2/0 2/0 3/0 3/0 2/0 2/0 3/0
Ring Topology 0/0 2/0 4/0 0/0 4/0 3/0 1/0 2/0 6/0 1/0
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The base PSO algorithm exhibits average performance compared
with the other algorithms, winning and losing on almost no metrics.
It also tends to place in the middle range of the metrics. This is
interesting, as it is the basic PSO algorithm without any extra
niching mechanisms included. This is the same algorithm used to
create counterfactual explanations by Andersen et al. [1]. While
some niching algorithms can produce better results, this shows
that PSO can still produce usable Rashomon sets of explanations
without explicit niching control.

The MADELON dataset was artificially created as a feature se-
lection challenge, with only 20 features that are informative of the
overall class. Interestingly, the lowest number of features modified
among any Rashomon set from any algorithm was 323 features
by FER-PSO. Thus, even in the best case, 300 redundant features
were used as part of the explanation. However, despite this, the
overall fidelity (𝐿1 and 𝐿2) of the solutions is quite low, especially
the 𝐿2 metric. This means that despite modifying many features,
it is only modifying them by a very small amount each. Further
research should focus on placing more explicit limits on the number
of features modified, cf work by Dandl et al. [5].

5.2 Further Discussion
A very important consideration for XAI methods is how well they
provide explanations and how well they can be implemented in a
real-world context. Many companies and end users will not imple-
ment XAI methods unless they can be done with very little effort, so
this is an important consideration when designing these methods.

Thus, methods with fewer hyperparameters are often preferred:
less hyperparameter tuning is required, so the turnaround time to
implement is much quicker. From the algorithms explored in this
paper, neither FER-PSO nor the ring topology requires extra tuning,
while SPSO and E-SPSO both require a niching parameter to be set.
This aligns with the results found, where the algorithms without
extra parameters performed consistently better across the metrics.

As per Section 2.1, an optimal explanation algorithm should
provide explanations that are contrastive, selected, social, and do
not only focus on probabilities. Our method proposed in this paper
meets each of these considerations, as discussed in turn below.

Contrastive: Counterfactual explanations are inherently con-
trastive as they provide an explanation of how an instance would
need to be changed to produce a different prediction. This is the
same as explaining why the given prediction was reached instead
of a preferred one, simply framed from the other direction. Selected:
A selected explanation is, simply put, one using as few features as
possible while still being correct. Observing the results produced in
the experiments by the best-performing algorithms, every dataset
except for Dermatology andMADELON has an average explanation
size across the Rashomon set of at most half of the total number of
features in the data, with many of them being well under this num-
ber. For the best explanation in each set, only MADELON produces
explanations that use more than half of the features. This makes the
explanations more likely to be accepted, as they are much simpler
than one that would use every feature.

Social: For an explanation method to be social, it has to have
the capability to provide multiple varying explanations. While not
fully providing this mechanism, in this work, this ability is repre-
sented by the size of the Rashomon set. As each explanation in the

Rashomon set uses a unique combination of features, this means
that a larger set has more ability to provide a social explanation. In
these experiments, the sets produced by SPSO most closely follow
this idea, producing very large Rashomon sets allowing for many
variations of explanations. However, the ring topology has the
strongest trade-off between Rashomon set size and fidelity, produc-
ing high-quality explanations but still having reasonably large sets.
While a large Rashomon set does not provide social explanations
on its own, it provides the opportunity for these explanations.

Not focused on probabilities:An important part of this work is that
the entire Rashomon set is evaluated, including the worst explana-
tion in the final set. Despite this, once the final set is produced, each
explanation in the Rashomon set should be treated as an equally
valid explanation. This is consistent with the idea that probabili-
ties do not matter in explanations. If a user prefers an explanation
that uses a specific combination of features, it should be treated
as better than an explanation with a higher fidelity that uses dif-
ferent features. In producing Rashomon sets, the focus should be
on increasing the floor of the fidelity within the set rather than
continuing to improve the ceiling like many algorithms focus on.

6 CONCLUSIONS
This paper introduced a new mechanism for producing Rashomon
sets of counterfactual explanations of predictions in black-box ML
models. To our knowledge, this is the first work to explore the
synthesis of such sets; previous work focused only on trade-offs
between different explanations. We showed that both the FER-PSO
and ring topology niching methods are especially appropriate for
this task, producing high-quality Rashomon sets with good fidelity
to the original instance while still retaining strong variety in the
features that are used. We showed that the ring topology should be
used when a more diverse Rashomon set is desired, and FER-PSO
should be used when the overall fidelity of the Rashomon set must
be as high as possible. The suitability of this mechanism for real-
world adoption was also discussed, showing that the algorithms can
be integrated into an existing ML ecosystem with very little tuning
and that the Rashomon sets of explanations allow for explanations
backed by psychology that users are more likely to accept.

Future work will focus on stronger mechanisms for social expla-
nations, exploring how a diverse Rashomon set can be appropriately
presented to a user to provide individual users explanations that
they are more likely to accept. While this was briefly touched on
in this paper, it requires more practical work to show the benefits
of having this larger set. In addition to this, future work should
focus on introducing a more complex fitness function that considers
each feature differently based on the abnormality of the feature
values. Studies have shown that explanations are strongly preferred
when they focus on abnormal causes [15], and so this should be
utilised and encouraged in the mechanism to produce explanations.
Finally, this paper has only explored the production of Rashomon
sets of counterfactual explanations for continuous classification
problems. Future work will explore different types of data to make
this technique more widely applicable to different domains.
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