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ABSTRACT
Learning Classifier Systems (LCS) are a well-known machine learn-
ing method, producing sets of interpretable rules in order to solve
a variety of problems. Despite this, a common issue that these sys-
tems run into is the creation of unhelpful rules, caused by having
multiple features in the data representing similar areas of knowl-
edge. While we can logically know that these rules will not be
useful in conjunction with each other, this is much more difficult
for the algorithm to innately know.

This paper presents an exploration into using clustering algo-
rithms for feature selection in LCS, selecting features that represent
each major cluster of feature information. Combined with the in-
nate power of LCS at finding nonlinear decision boundaries, these
selected features can achieve results close to that of the full feature
set while reducing the training time required to reach those results.
The feature selection performed is highly interpretable, allowing for
different features to be selected while maintaining the information
spread in the feature subset.
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1 INTRODUCTION
Learning Classifier Systems (LCS) [1] are an Evolutionary Compu-
tation method that learns a population of rules in order to perform
tasks. One common application for LCS systems is classification,
where each rule makes an individual mapping of the class from an
input, and these heuristics are combined to form an overall class
prediction.

However, LCS algorithms are known to spend a considerable
amount of time in searching in "unpromising areas" where no good
rules can be found [2]. This makes for an inefficient algorithm that
ultimately produces rules which are less effective than potential
alternatives.
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If color is red AND wheels is # AND direction is # Then fast

If color is red AND wheels is 4 AND direction is # Then fast

If color is # AND wheels is # AND direction is left Then slow


If color is # AND wheels is 2 AND direction is left Then slow
If color is # AND wheels is # AND direction is right Then fast

If color is blue AND wheels is # AND direction is right Then slow

Figure 1: Example of an LCS rule set. Rules in green match
the input, and rules in red do not.

Clustering is a form of machine learning that falls under the
category of unsupervised learning [3], grouping similar instances
of unlabelled data into distinct subsets known as clusters. This
is performed without any knowledge about the data other than
the data points themselves. Through slight modifications, cluster-
ing algorithms can be used to cluster features in the data, rather
than instances. This has been used previously for feature selection,
producing strong results [4].

This position paper explores the use of clustering algorithms as
an interpretable algorithm to select features for LCS, addressing
the problem of searching in unpromising areas. It is hypothesised
that this will select features that are especially good at utilising the
ability of LCS to find nonlinear decision boundaries, as each cluster
will represent different areas of knowledge in the feature set.

2 BACKGROUND
2.1 Learning Classifier Systems
Learning Classifier Systems (LCS) [1] are a broad descriptor of a
class of Evolutionary Computation algorithm that learns a popu-
lation of models over a series of generations. For the purposes of
this paper we consider only ‘Michigan Style’ LCS, which evolve
a population of rules that are then considered as a whole entity
when creating a prediction from the system. More precisely, this
paper considers the sUpervised Classifier System (UCS) algorithm
[5], which is a supervised learning LCS system that is designed
to simplify the reward criteria when the correct action is always
known immediately.

A rule in UCS is defined, in essence, as an "If conditions Then
action" statement. The conditions are quantifiers over the values
taken in the data and the action is the predicted class — for example,
a rule could be "If color is red AND wheels is 4 Then fast". Not all
features in the data have to be used in a rule. Conventionally, a
feature that exists but is not counted in a rule is denoted as a ‘#’
symbol in the rule, representing the fact that any value can fit that
criteria. Discrete features are handled in a rule by denoting the
exact value or a set of exact values of that feature, while continuous
features are denoted with an upper and lower bound for the feature.
Figure 1 shows an example of a basic LCS rule set.
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The basic idea of UCS is to iterate through each instance in
the dataset, evaluating if they fit any of the existing rules. A rule
matches the data if all the conditions in the rule are met by the
instance. From this, a match set of all such rules is formed. Each
rule in the match set with the correct prediction then has their
fitness increased, while rules with the incorrect prediction have
their fitness decreased. If there are no matching rules, a new rule is
created that matches the instance with the correct prediction, with
added generality. After a set number of instances are seen by the
system, the rules are modified through the genetic operations of
crossover and mutation in order to find the optimal rules for the
data.

LCS systems are known to be highly interpretable machine learn-
ing models, as the population of rules can be directly read by a user.
They provide both global and local explanations with ease: the full
set of rules can be explored to get a general idea of the model, and
the specific rules that apply to a prediction can also be explored in
order to provide a local explanation for that prediction.

2.2 Feature Selection
Feature selection [6] is a form of data transformation that selects a
subset of the features in a dataset to use in further algorithms. There
are many reasons to perform feature selection — it can improve the
efficiency of machine learning models by requiring less features
to predict on, it can improve performance by removing redundant
or counterproductive features from the data, and it can improve
interpretability by reducing the full feature set down to a human-
understandable number of features.

There exist three main categories of feature selection algorithm:
filter, wrapper, and embedded [7]. Filter methods perform feature
selection as a separate task to the main machine learning prob-
lem, selecting features based only on the relationships in the data.
Wrapper methods, on the other hand, utlising the machine learning
algorithm within the feature selection to tailor the selected fea-
tures to that algorithm. However, this can be very computationally
expensive — especially for evolutionary algorithms such as LCS.
Finally, embedded algorithms perform feature selection alongside
the machine learning algorithm.

2.3 Clustering Algorithms
This paper explores the use of both partitional and density-based
clustering algorithms. While these algorithms share some similari-
ties, they differ in how clusters are defined and in the consideration
of outliers.

There are two partitional clustering algorithms explored in this
paper, k-means and k-medoids. The k-means algorithm first selects
k random instances on a uniform distribution from the dataset, and
sets them to be the centre of each cluster. Every instance is then
added to the nearest cluster, and then the cluster centres are updated.
This continues until the partitions between distinct clusters does
not change [8]. The k-medoids algorithm is very similar, except
the cluster centre is always set to be the central-most instance in
a cluster rather than an arbitrary point in vector space [9]. An
important distinction between these two algorithms is that the
k-means algorithm defines arbitrary points in space to represent
the centre of a cluster. In contrast, the k-medoids algorithm will

Algorithm 1: Feature selection algorithm through feature
clustering
Parameters :𝑇 training data, 𝐷 dissimilarity function, 𝐶

clustering algorithm
1 𝐹 ← transpose of 𝑇 ;
2 𝑐 ← clusterings of 𝐹 using 𝐶 (𝐹, 𝐷);
3 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ← empty list;
4 for cluster in 𝑐 do
5 find most central value in 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ;
6 add value to 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠;
7 end
8 return 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠;

always use an actual data point as the representation of the centre
of a cluster. This allows for more flexibility, as any precomputed
dissimilarity values can be provided to the algorithm.

The density based clustering method used in this paper is Hi-
erarchical Density-Based Spatial Clustering of Applications with
Noise (HDBSCAN) [10]. This is an extension of the DBSCAN algo-
rithm, and creates clusters by finding a selection of core points for
each cluster, then adding outer points to to complete the clustering.
Unlike k-means and k-medoids, HDBSCAN does not need to be
provided with the desired number of clusters and instead decides
on how many clusters to create based on the amount of groups
of core points. Additionally, this algorithm will potentially mark
points as outliers, and not include them in any cluster. As with
k-medoids, this algorithm only considers the relationship between
defined features and therefore can be provided with precomputed
dissimilarity values.

3 PROPOSED METHOD
The proposed method is to use clustering algorithms to select a
good feature subset for use in LCS classification. 5 variations of this
method are explored, using different combinations of clustering
algorithms and dissimilarity measures. This is used as a filter feature
selection method.

The data features are first clustered by applying a given cluster-
ing algorithm to the transposed dataset. This groups features into
clusters, where each cluster contains features that represent similar
information in the data. Next, the centre feature is selected from
each cluster. This is chosen as it is assumed that the feature in the
centre of each cluster will represent the most general information
of that cluster. Each of the features not selected in this manner
are permanently set as # in the LCS. Algorithm 1 shows a general
overview of the algorithm used.

Figure 2 shows an example of clustering features in a dataset.
In this example, the ten features 𝐹1, . . . , 𝐹10 are grouped into three
distinct clusters. Using these clusterings, three features in total
would be chosen as part of the feature selection: 𝐹1, 𝐹5, and 𝐹6, as
these are the closest features to the centre of each cluster.

3.1 Dissimilarity Metrics
There are two differentmetrics of dissimilarity used in the clustering
of features. The first is Euclidean distance, which is the distance
between two features in a straight line (as the crow flies). The
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Figure 2: Example feature clusterings. The centre of each
cluster is marked with an X

distance 𝐷 is defined by Equation (1), where 𝑛 is the number of
instances in the dataset and 𝐹1𝑖 and 𝐹2𝑖 are the two features being
compared on the 𝑖th instance in the dataset.

𝐷 =

√√
𝑛∑
𝑖=1
(𝐹1𝑖 − 𝐹2𝑖 )2 (1)

The second similarity metric used in the method is the mutual
information between the distributions of features. In order to treat
this as a metric, the variation of information (𝑉 𝐼 ) between features
is taken. The variation of information is defined by Equation (2),
where 𝐻 (𝐹𝑖 ) is the entropy of feature 𝐹𝑖 and 𝐼 (𝐹𝑖 , 𝐹 𝑗 ) is the mutual
information between 𝐹𝑖 and 𝐹 𝑗 .

𝑉 𝐼 (𝐹1; 𝐹2) = 𝐻 (𝐹1) + 𝐻 (𝐹2) − 2𝐼 (𝐹1, 𝐹2) (2)

Each of these similarity metrics provide different qualities to the
clustering method. The Euclidean distance metric is a much more
simple metric, and is the one often considered when clustering
algorithms are created. It can be calculated between a feature and
any given point in the data space, and so works with any clustering
algorithm. However, it can only properly give the distance between
ordinal features, as nominal data has no way of measuring the
innate distance between each feature.

The variation of information metric, on the other hand, requires
a sample of the distribution of each feature. Due to this, it cannot
give the similarity between a feature and arbitrary points. As a
metric, it determines similarity based on the distributions of each
feature rather than the exact values of each instance. As such,
the variation of information metric is more suited to the task of
clustering features. In addition to this, the variation of information
metric has no issues with the type of data — it works just as well
with ordinal or nominal features, or even a mix of the two. One
downside of this metric is that it can only be used for clustering
algorithms that just evaluate distances between features and not
algorithms that create arbitrary points. For example, the k-medoids
algorithm must be used in place of the k-means algorithm.

Table 1: Experiment Parameters

Dataset Pop. Size Total Features Features Selected (k)

Sonar 5000 60 10
Wine 1000 13 5
Zoo 150 17 6
Mushroom 1000 22 10

3.2 Clustering Algorithms
As the k-means algorithm utilises arbitrary points in space to rep-
resent the centres it can only be used with the Euclidean distance
metric. However, as the k-medoids and HDBSCAN algorithms only
use known data points, they can also utilise the variation of infor-
mation metric between features.

As the clusters in HDBSCAN are not as spherical as those in the
partitional clusteringmethods, a number of methods of determining
the centre cluster were explored. The final decided method was
to first calculate the geometric centre of each cluster, then to find
the closest feature to each of those centres. Additionally, outlier
features are chosen to be kept, as they represent information that
is not contained by any of the clusters.

4 EXPERIMENTAL DESIGN
The proposed method is implemented in Python, utilising the basic
eLCS library [1] as a baseline model of learning classifier systems.
The clustering algorithms used are the Scikit learn implementations
of k-means and k-medoids[11] and the original implementation of
HDBSCAN [10]. The entropy and mutual information metrics for
the variation of information are estimated using npeet [12]. 1

Four datasets from the UCI machine learning repository [13]
are evaluated — Wine, Sonar, Zoo, and Mushroom. These datasets
were chosen to provide a range of problem types, with the Wine
and Sonar datasets containing continuous, real valued data and the
Zoo and Mushroom datasets containing categorical data. The Sonar
and Mushroom datasets are both binary classification problems,
while the Sonar and Zoo datasets are both multiclass classification
problems.

Each experiment is repeated 30 times over different random
seeds, in order to account for variation in the methods. In addition
to this, due to the low number of instances in each dataset, each
experiment performs 10-fold cross validation on the full dataset.

The experiments were run on a high performance computing
grid in order to allow for more results to be computed at once.

Standard UCS parameters, as defined by Urbanowicz and Browne
[1], were used for the LCS in all experiments. The one difference to
this is the micropopulation size of the classifier system, as it was
found in initial experimentation that some datasets require far less
rules in order to achieve comparable performance. Each dataset
also had a different number of set clusters for the k-means and
k-medoids algorithms. These 𝑘 values were found through initial
experimentation, giving enough information to still successfully
classify the data but representing a significant reduction in problem
complexity. The chosen values for both of these parameters are
shown in Table 1.

1Implementation code can be found at https://github.com/HaydenAndersen/ClusterLCS/
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Table 2: Continuous data results (test set accuracy)

Method Wine Sonar

Baseline 1 0.965 0.658
Baseline 2 0.955 0.566
k-means 0.821 0.672
k-medoids 0.857 0.658
HDBSCAN 0.965 0.576
k-medoids VI 0.943 0.641
HDBSCAN VI 0.965 0.592

Table 3: Categorical data results (test set accuracy)

Method Zoo Mushroom

Baseline 1 0.929 0.946
Baseline 2 0.703 0.949
k-medoids VI 0.789 0.900
HDBSCAN VI 0.929 0.944

The experiments are run against two baseline models. The first
baseline is simply using the full dataset as input to the eLCS sys-
tem. The second baseline is a simple feature selection method that
ranks all features in terms of entropy, then selects the top n fea-
tures for selection. The idea behind this baseline is that it is based
on information theory in the same way as the proposed method,
and it is similarly an unsupervised filter feature selection method.
This baseline is implemented using Scikit learn and the entropy is
estimated using npeet. The number of features selected is the same
as the number of clusters in the proposed method and the baseline
experiments are run the same number of times and with the same
random seeds. This provides the fairest comparison possible.

5 RESULTS
Table 2 shows the average accuracy of eLCS for each of methods
on the Wine and Sonar datasets, and Table 3 shows the average
accuracy of eLCS for the methods that work with categorical data
on the Zoo and Mushroom datasets.

6 DISCUSSION AND ANALYSIS
While Baseline 1 does not perform any feature selection, it is still
useful to demonstrate the possible performance of the classification
algorithm when the full feature set is used. This allows us to evalu-
ate how well the selected subset performs in comparison. However,
the proposed methods are predominantly compared to Baseline 2,
as another method of feature selection.

An interesting observation is that, at first glance, the HDBSCAN
methods appear to perform as well as the full feature set. How-
ever, observing the clustering results shows that this is because
the feature selection is actually selecting all features. A few small
’clusters’ are created with only a single feature, and the rest of the
features are marked as outliers. As the outliers are kept as selected
features, this has the effect of not actually performing any feature
selection. While this can be seen as the feature selection process
considering every feature as important, the fact that it keeps every
feature results in no improvement to the efficiency or performance
of the LCS.

In terms of test set accuracy, the proposed method outperforms
the baseline feature selection with all three partitional clustering
methods on the Sonar dataset and the variation of information k-
medoids method on the Zoo dataset. However, the baseline method
outperforms the proposed method on the Mushroom dataset.

As a feature selection algorithm, this is a very understandable and
interpretable method. As users we can easily visualise the clustering
results, and therefore see which other features the selected feature
represents in the final subset. This essentially provides a direct
mapping from the original feature set to the selected features. If a
specific feature in the selected subset is not performing well, we
can then select a different feature from its original cluster, without
changing which other features are selected. This will retain the
overall spread of information in the subset, as features are selected
from the same clusters.

A potential issue causing the proposed methods to not reach
their full potential performance is that the feature chosen is the
one that is closest to each cluster centre. However, these features
themselves may not encode much information and so may not
actually provide much value to the overall feature selection. An
interesting extension to this method would be to choose the feature
in each cluster that contains the highest entropy, or potentially
weight the entropies by closeness to the cluster centres, and then
choose the highest scored feature. This would have the effect of
selecting what should be the most informative feature from each
cluster, rather than the most representative feature.

7 CONCLUSIONS AND FUTUREWORK
This position paper has introduced a novel feature selection algo-
rithm for use in LCS, with some promising results gathered from
early experiments. The algorithm is very transparent in selecting
certain features, meaning that when using it we can easily visualise
and understand why specific features are being selected.

Despite this, further research is required in order to find the best
combination of clustering algorithm and dissimilarity measure to
use in order to produce the best possible results. This includes the
exploration of different families of clustering algorithm, such as
hierarchical clustering and graph-based clustering. Additionally,
further research is required into which feature to select to best
represent each overall cluster. Finally, further work is needed to
explore the visualisation of the proposed feature selection method,
in order to demonstrate the interpretability of the algorithm.

Using these feature clusters, it is also theoretically possible to
cluster LCS rules throughout the training process. Rules that utilise
features in the same cluster can be considered clustered together,
and therefore be marked as similar. This would prevent rules that
are too similar being combined, and help the system more easily
discover the best rules for a specific problem.
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