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Abstract—Counterfactual explanations are a popular eXplain-
able AI technique, used to provide contrastive answers to “what-
if” questions. These explanations are consistent with the way
that an everyday person will explain an event, and have been
shown to satisfy the ‘right to explanation’ of the European data
regulations. Despite this, current work to generate counterfactual
explanations either makes assumptions about the model being
explained or utlises algorithms that perform suboptimally on con-
tinuous data. This work presents two novel algorithms to generate
counterfactual explanations using Particle Swarm Optimization
(PSO) and Differential Evolution (DE). These are shown to
provide effective post-hoc explanations that make no assumptions
about the underlying model or data structure. In particular,
PSO is shown to generate counterfactual explanations that utilise
significantly fewer features to generate sparser explanations when
compared to previous related work.

Index Terms—explainable AI, counterfactual explanation, par-
ticle swarm optimization, differential evolution

I. INTRODUCTION

Explainable AI [1] (XAI) is a field of AI that focuses
on explaining the predictions made by AI systems. These
explanations can be intrinsic to the model or post-hoc, they can
be tailored to explain specific models or model agnostic, and
they can explain the entire model or a local area of the model.
Counterfactual Explanations (Counterfactuals) are a post-hoc
XAI technique that aims to produce an explanation for how a
given input would need to be different to produce a different,
more desired, output by a given AI system [2].

As a post-hoc method, a desired property of systems to
generate counterfactual explanations is that they should make
as few assumptions as possible about the underlying model and
data being explained. Despite this, many existing studies to
produce these explanations expect either a specific underlying
model [3][4] or rely on the data itself to be differentiable [5],
which is often not the case.

Previous research [6][7] has shown that population-based
evolutionary algorithms have strong promise in generating
entirely model-agnostic counterfactual explanations. However,
these papers only explore the use of Genetic Algorithms
(GAs). This carries the issue that counterfactual generation

is an inherently continuous problem on many datasets, and
GAs have been shown to be unable to find optimal solutions
for many continuous problems [8][9]. This means that these
algorithms are unlikely to generate counterfactual explanations
that are as similar as possible to the original instance, which
is the goal of counterfactual optimisation.

Particle Swarm Optimisation (PSO) [10] is an Evolutionary
Computation (EC) method that utilises a number of particles
representing solutions, exploring the search space with these
particles. PSO is suited for use in continuous domains as each
particle will travel directly through the data space, the data
domain implicitly specified by the training data.

Differential Evolution (DE) [11] is another EC method that
utilises a population of solutions, iteratively improving the
population by combining different solutions. In opposition to
GA and PSO, DE will only create a new solution in the
population if it is an improvement on previous solutions. As
with PSO, DE has been developed for use over continuous
domains.

This paper explores the use of PSO and DE to generate
counterfactual explanations for given class predictions in a
black-box model. These are both algorithms that are developed
for a continuous space, and make no assumptions about the
structure of the underlying search space. The specific goals of
this research are to:

• propose new approaches to generate counterfactual ex-
planations utilising PSO and DE;

• evaluate the PSO-based and DE-based algorithms against
existing GA work on several datasets of varying com-
plexity;

• explore counterfactual explanations produced for a sim-
ple, real-world, dataset, which will be used to qualita-
tively evaluate the accuracy (where accuracy refers to the
ability of the algorithm to produce a sensible explanation
for unseen test data) of the explanations.
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Fig. 1. Counterfactual explanation example. A counterfactual can be produced
by modifying one of each of the features, or by modifying both of them.

II. BACKGROUND

A. Counterfactual Explanations

Counterfactual explanations, introduced by Watcher et al.
[2], are artificial data points that are as close as possible to
an original instance but produce a different output in a black-
box prediction model. Figure 1 shows an example of different
counterfactuals produced for a data point, changing the pre-
dicted class from A to B. This illustrates that a counterfactual
can modify a subset of all the possible features (dimensions in
the search space), usually modifying each feature by a lesser
magnitude the more features are modified.

Counterfactual explanations are a useful post-hoc XAI
method for ML models as they have been shown to fulfil the
‘right to explanation’ of the European data regulations [2].
Counterfactual explanations are also known for their ability to
provide a contrastive explanation, which has been shown to
be more effective and understandable to users [12].

An important consideration for counterfactual generation is
the number of features that are modified to create the counter-
factual. Fewer features changed means that the counterfactual
is more likely to be accepted by users due to higher simplicity
[12]. To account for this, the distance between the original
instance and the new instance is often calculated using the
Manhattan distance, also known as the L1 norm. This is due
to the sparsity inducing properties of the L1 norm [13], [14],
which will push the individual differences of as many features
as possible to be zero. Equation (1) gives the Manhattan
distance between two points F1 and F2.

D =

dim(F )∑
i=1

|F1i − F2i| (1)

In order to induce more explicit control over the gen-
erated explanations, a number of other evaluation metrics
are proposed. Most notably, Dandl et al. [7] proposed a

multi-objective algorithm incorporating four objectives: the
similarity to the desired output, the distance from the original
instance, a count of features modified, and an approximation
of how well the counterfactual fits into the original data
distribution. However, these fail to work well as a multi-
objective problem as these objectives are not all conflicting.

Counterfactual explanations can be taken as a full explana-
tion on their own [7][15], or they can be used as a tool to
learn and explain more information about the data or black-
box model[6] [16].

B. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) [10] is an EC method
that utilises a number of particles representing solutions, ex-
ploring the search space with these particles. PSO is optimised
to be used over continuous domains, as each particle will travel
directly through the data space. A particle is represented as
a vector of values, where each value represents the position
of the particle in that particular dimension. Similarly, each
particle has a given velocity through each dimension of the
data. The full representation of a single particle is therefore
given as ([x1, x2, x3, ..., xD], [v1, v2, v3, ..., vD]) where xi and
vi give the position and velocity along dimension i, and D is
the total number of dimensions in the data.

At each step of the algorithm, each particle will move
through the search space, tending towards both the best posi-
tion that particular particle has found (denoted as pbest) and
the best position the full swarm has found (denoted as gbest).
For a given particle the position and velocity updates can be
defined according to Equations (2) and (3) respectively, where
t represents the tth step in the search process, i represents
a single dimension of the data, r1 and r2 are random values
sampled from U(0, 1), and w, c1, and c2 are given constants.

xt+1
i = xt

i + vt+1
i (2)

vt+1
i = w · vti + c1r1(pbesti − xt

i) + c2r2(gbesti − xt
i) (3)

The constant w refers to the inertia weight of the algorithm,
used to balance the exploration and exploitation of the particles
to improve convergence. The constants c1 and c2 refer to
acceleration constants, used to balance of contributions of
pbest and gbest. Through numerical analysis, it has been found
that for a general case the best values for these constants are
w = 0.7298, c1 = 1.4962, and c2 = 1.4962 [17].

C. Differential Evolution

DE [11] is an EC method that maintains a population of
solutions, represented similar to the solutions in PSO. The
difference is in how this population is modified: in DE, a
solution is mutated and then combined with another solution in
the population in order to create a new solution. If this defined
solution performs better than the original solutions, then it is
added to the population. There are many variations of DE, but
this paper will focus on the DE best/1/bin schedule.

DE is designed to perform well on nonlinear and non-
differentiable problems, as it does not directly travel through



the search space. In addition to this, it does not make any
specific assumptions about the shape of that search space.

A solution in DE is represented in a similar way to the
spatial position in PSO. Given D dimensions, a solution
is given as the vector [x1, x2, x3, ..., xD]. At each stage of
the algorithm, each solution s will undergo combination.
For combination, the best solution in the population xbest is
combined with two other random solutions in the population
x1 and x2 according to Equation (4) to form a donor vector
v. The constant F is known as the scale factor, controlling the
step size of the search.

vi = xbest + F (x1 − x2) (4)

Once the donor vector has been generated, a new solution
y is created according to Equation (5). At each index i, a
random value ri ∼ U(0, 1), is sampled. The constant CR is
known as the crossover probability, controlling how often the
new solution uses the donor or original solutions.

yi =

{
vi ri < CR

si otherwise
(5)

Once y has been found, the fitness is compared to the
original solution s. If it has better fitness, it replaces s in
the population. [18]

Later work found that varying the value of F throughout
the optimisation improved the convergence of the optimisation
[19]. Known as dithering, this samples F uniformly from a
user-defined range at each iteration of the algorithm.

D. Related Work

While not all EC methods, there exists a variety of meth-
ods for generating counterfactual explanations for black-box
models. Karimi et al. [15] proposed an algorithm utilising
Satisfiability Modulo Theories (SMT) solvers, treating coun-
terfactual production as a formal verification problem. Grath
et al. [20] proposed a method to generate counterfactuals
using the Nelder-Mead algorithm, a simplex-based direct
search algorithm. Poyiadzi et al. [21] proposed a graph-based
algorithm for counterfactual generation. An issue with many
of these algorithms, along with others, is that they will only
produce a single counterfactual for the instance. Population-
based methods such as EC can address this issue, allowing for
counterfactual explanations to be explored in multiple areas of
the problem space at the same time.

An important population-based precursor to later EC-
based algorithms for counterfactual generation is the Grow-
ing Spheres algorithm proposed by Laugel et al. [4]. This
searches around the original instance by placing points along
an increasingly growing sphere centred on the instance until a
point is found that gives the desired prediction. Greedy feature
selection is then used to set as many features to the original
values as possible to produce the most sparse, and therefore
simplest, counterfactual. One issue with this method is that if
the sphere sits at a diagonal edge of the decision boundary
then the algorithm will terminate before discovering further

A

B

Fig. 2. Potential non-optimality of the Growing Spheres algorithm. The
algorithm will terminate having found the counterfactual shown in solid grey,
when there is another potential explanation that only modifies a single feature.
Sparser explanations that modify those features by a higher amount are known
to be preferred over dense explanations [22]

away but sparser counterfactuals. Figure 2 demonstrates this
issue.

Genetic algorithms (GA) have been used to generate coun-
terfactual explanations, producing feasible and interpretable
populations of explanations. Sharma et al. [6] first proposed a
GA based method that follows a relatively simple GA optimi-
sation method, evaluating each counterfactual in the population
using Manhattan distance. Dandl et al. [7] then expanded on
this idea with an Evolutionary Multiobjective algorithm on the
four objectives described above. This algorithm produces an
approximate Pareto front of counterfactuals that give different
trade-offs between the four objectives, however, as not all the
objectives are conflicting many of the solutions in the front
will have poor performance.

An issue with these methods is that counterfactual produc-
tion is a problem over a continuous range of data, which can
result in a simple GA algorithm struggling to converge to a
solution [8][9] without additional local optimisation. Other
population-based methods, such as PSO or DE, are more
appropriate to create counterfactuals as similar as possible to
the original data as they are optimised to work over continuous
domains.

III. PROPOSED METHOD

The proposed approaches are to utilise custom PSO and
DE algorithms respectively in order to generate counterfactual
explanations for a provided black-box model f . The use
of population-based algorithms that are designed to work
with continuous data is hypothesised to be able to generate
explanations that are closer to the decision boundary than
previous EC methods, resulting in a minimal change from the
original instance.

Distance between generated counterfactuals and the orig-
inal point is measured as discussed in Section II-A, using



the Manhattan distance d. This encourages the algorithm to
change as few features as possible for each particle during the
evolutionary process.

For both algorithms, each solution is represented as a feature
vector of floating-point values. These vectors have the same
dimensions as the points in the original data. Given an original
instance i, the optimisation task for the algorithms is to find
a counterfactual c that optimises Equation (6), where f(c)
results in the desired class.

c = min
c

d(i, c) (6)

In order to treat each feature as equally as possible, both
algorithms require that the data is scaled to a common range
before they begin. For simplicities sake, this should generally
be taken as the range [0, 1]. In addition to simplifying the
calculations of the data, this scaling also allows for a more
fair evaluation of the algorithms, as the evaluation will also
treat each feature equally.

Because of the fact that the data is generally scaled from
[0,1], the set of valid counterfactual solutions targeting a
specific class t is defined according to Equation (7).

C = {c1..n|n = dim(i), f(c) = t,∀ci : ci ∈ [0, 1]} (7)

Algorithm 1 is used to generate counterfactuals using PSO.
This algorithm requires a pretrained model f , a target predic-
tion result t, and a point to be explained i. For the desired
number of iterations, each particle will be updated based on
both the best counterfactual they have found so far and the
best counterfactual the entire population has found so far.
This algorithm can either return just the fittest counterfactual
produced or the entire population of counterfactuals.

Algorithm 2 is used to generate counterfactuals using DE.
As with PSO, this algorithm requires a pretrained model
f , a target prediction result t, and a point to be explained
i. For the desired number of iterations, each solution will
be updated based on a combination of that solution and
multiple other solutions in the population. As DE eventually
converges on a single point, this algorithm returns only the
fittest counterfactual produced.

IV. EXPERIMENTAL DESIGN

A. Datasets

Six datasets were selected to evaluate the proposed methods.
Four datasets were sourced from the UCI machine learning
repository [23], one dataset (kc2) was sourced from the
OpenML platform[24], and the final dataset (Penguins) was
sourced from an online R repository [25]. These datasets were
chosen as they are all classification problems, over a contin-
uous domain. They provide a steady increase in difficulty for
the counterfactual problems. Table I shows the datasets chosen,
ordered approximately in order of complexity.

The Penguins dataset is chosen as it is a simple toy problem
that can be used to easily visually inspect the results. It is used
as an alternative to the well-known iris dataset, keeping the
same property of being a useful toy problem, but is easier to
visualise for a qualitative evaluation [26].

Algorithm 1: PSO algorithm for counterfactual gener-
ation
Parameters: w, c1, c2
Data: f model to be explained, i point to be

explained, t desired prediction
1 generate population randomly, sampling initial values

from U(0, 1);
2 gbest←∞;
3 for particle in population do
4 pbest←∞;
5 v ← random values from U(0, 0.5);
6 end
7 for desired number of iterations do
8 for particle in population do
9 if f(particle) is t then

10 fitness← d(particle, i) (Equation (1));
11 else
12 fitness←∞;
13 end
14 if fitness < pbest then
15 pbest← particle;
16 end
17 if fitness < gbest then
18 gbest← particle;
19 end
20 end
21 for particle in population do
22 update v according to Equation (3);
23 update particle according to Equation (2);
24 end
25 end
26 return full population or fittest particle;

B. Experiment Setup

To evaluate the proposed algorithms they are compared
against the GA method proposed by Sharma et al. [6]. This
gives a good comparison to a similar EC-based algorithm
for counterfactual explanation production, with the main dif-
ference between the three algorithms being only how the
population is updated. 1

For the PSO algorithm, standard parameters of w = 0.7298,
c1 = 1.4962, and c2 = 1.4962 are used [17]. While more
fitting parameters could be found for each individual problem,
the proposed method is intended to fit any data without too
much modification and an exploration of perfectly optimal
parameters is beyond the scope of this paper. A range of pop-
ulation sizes and iterations for PSO were explored, and from
these explorations, a population size of 200 was used for Pen-
guins, Breast Cancer Wisconsin, and Wine; a population size
of 500 was used for Steel Plates Faults and Dermatology. For
all experiments, 500 generations were utilised. The parameters
used for GA are the same as those defined by Sharma et al.,

1Implementation code for the proposed methods can be found at
https://github.com/HaydenAndersen/ECCounterfactuals



Algorithm 2: DE algorithm for counterfactual gener-
ation

Parameters: Fmin, Fmax, CR
Data: f model to be explained, i point to be

explained, t desired prediction
1 generate population randomly, sampling initial values

from U(0, 1);
2 xbest←∞;
3 for desired number of iterations do
4 for solution in population do
5 if f(solution) is t then
6 fitness← d(particle, i) (Equation (1));
7 else
8 fitness←∞;
9 end

10 if fitness < xbest then
11 xbest← solution;
12 end
13 end
14 for solution in population do
15 select random individuals x1, x2 from

population;
16 F ← U(Fmin, Fmax);
17 generate v according to Equation (4);
18 generate y according to Equation (5);
19 if f(y) is t and distance(y, i) < fitness then
20 replace solution with y in population;
21 end
22 end
23 end
24 return fittest solution;

TABLE I
CHOSEN DATASETS

Name Features Instances Classes
Penguins 4 333 3
Breast Cancer Wisconsin (BCW) 10 699 2
Wine 13 178 3
kc2 21 522 2
Steel Plates Faults (SPF) 27 1941 2
Dermatology 34 366 6

with the exception of the population size. Initial experiments
found that the equation used in the paper produced far too
large a population size, which was not providing any visible
performance improvement. For the sake of fair comparison,
the same population size and number of iterations were used
as the PSO. This results in the same number of evaluations
between algorithms. The standard parameters of DE as defined
in the SciPy Python library at the time of writing are used [27].
These are a population size of 15, 1000 iterations, CR = 0.7,
Fmin = 0.5, and Fmax = 1.0.

For each of the three algorithms, a single experimental run
takes the following steps:

1) Scale the input data so that each feature is in the range

[0, 1].
2) Train a black-box model on the provided training data.

For the sake of these experiments, a random forest
classifier was used as the black-box model. However,
any classifier model can take the place of the random
forest with no changes to the rest of the algorithm.

3) Select a single random instance from the data.
4) Use the black-box model to predict the class of the

instance.
5) For each class other than the predicted one, use the

chosen algorithm to find a single counterfactual that the
black-box predicts as that class.

6) Record the discovered counterfactual, as well as both
the scaled change in each feature and the change in each
feature in the original data ranges.

7) Repeat from Step 3 20 times, using the same black-box
model but a different chosen instance.

Of note is that each instance will have a counterfactual
explanation generated for each possible class and that multiple
instances are explained for the same model. This is to re-
move potential false-positive results, where good performance
is reported simply because of an instance being randomly
selected near a decision boundary. In addition to this, the
random selection of instances and the training of the black-box
model is provided with a randomisation seed so that they are
consistent between testing the three algorithms. This means
that for the same seeds, each algorithm will be tested on the
same black-box model and counterfactuals will be generated
from the same initial instances.

As steps 2, 3, and 5 are all non-deterministic, each algorithm
has 30 experimental runs performed. This means that, for a
dataset with 3 classes, each algorithm will be used to generate
a total of (3− 1)× 20× 30 = 1200 counterfactuals.

V. RESULTS AND DISCUSSION

A. Results

The results of the initial experiments on the three datasets
are shown in Table II. For each combination of dataset and al-
gorithm, the table shows the mean number of features that are
modified in generated counterfactual explanations. In addition
to this, it shows both the mean Manhattan distance (L1) and the
mean Euclidean distance (L2) from the original points to the
counterfactuals. The Euclidean distance is displayed as it gives
a measurement of exactly how similar the counterfactuals are
to the original instance, not worrying about how many features
are modified.

A Friedman test followed by post-hoc Nemenyi tests are
performed for the features changed, L1, and L2 metrics, with
a α of 0.05. For each metric, a ↑ is shown if the result is
statistically significantly better than both other algorithms, and
a ↓ is shown if the result is statistically significantly worse than
both other algorithms.

B. Initial Analysis

For all six datasets, the PSO algorithm modifies a statis-
tically significant fewer number of features than the other



TABLE II
PERFORMANCE OF BEST COUNTERFACTUALS

Dataset Method Features changed L1 L2

BCW
PSO 4.15↑ 0.87 0.55
DE 9.16 0.81↑ 0.48↑
GA 9.67↓ 0.9↓ 0.51

Dermatology
PSO 13.82↑ 5.48↑ 1.46↑
DE 33.48 7.8 1.72
GA 33.74 8.1↓ 1.79↓

Penguins
PSO 2.05↑ 0.31↑ 0.25↑
DE 3.34 0.31 0.25
GA 3.74↓ 0.32↓ 0.26↓

SPF
PSO 10.22↑ 0.6↓ 0.34↓
DE 13.85 0.13↑ 0.08↑
GA 25.86↓ 0.24 0.12

Wine
PSO 3.95↑ 0.54 0.36↓
DE 11.61 0.5↑ 0.33↑
GA 12.37↓ 0.56↓ 0.34

kc2
PSO 9.49↑ 0.19 0.09
DE 14.22 0.59↓ 0.17↓
GA 19.77↓ 0.14↑ 0.06

algorithms. For the Breast Cancer Wisconsin, Wine, and
Dermatology datasets PSO modifies less than half as many
features as the other two algorithms. This behaviour is likely
due to the behaviour of PSO compared to the other two
algorithms. As discussed above, GA struggles to converge for
continuous problems. DE will only accept a new solution if
it is an improvement on previous solutions, which means if it
begins to converge on a solution that modifies a large number
of features then it will simply continue that convergence.
In contrast, PSO allows for more exploration of different
solutions, allowing for more sparse counterfactuals to be
found.

The DE algorithm shows a statistically significant improve-
ment over the other algorithms on the L1 and L2 metrics
for the Breast Cancer Wisconsin, Steel Plates Fault and Wine
datasets. The PSO algorithm shows a statistically significant
improvement over the other algorithms on the L1 and L2
metrics for the Dermatology and Penguins datasets. The only
time the GA algorithm outperforms both other algorithms is
on the L1 metric in the kc2 dataset. This performance spread
is consistent with the idea discussed previously that GA is
unsuited for optimising across the continuous domain that is
required for counterfactual production. Given that the PSO
algorithm produces considerably sparser solutions than the
other algorithms and that it generally produces either the most
similar or close to the most similar explanations to the original
point, it is in general the most effective method.

An interesting outlier in the results is the Steel Plate Fault
dataset. Despite changing fewer features than both other algo-
rithms, the PSO algorithm creates counterfactual explanations
that are significantly further away from the original point. This
is shown by the fact that both the L1 and L2 metrics are
significantly higher for the PSO. This is likely due to the shape
of the data space of the dataset, as a solution that does not
result in the current class will be set to a very poor fitness. Due
to the fact that GA and DE both work by combining existing

Fig. 3. Feature-wise analysis of GA

Fig. 4. Feature-wise analysis of DE

Fig. 5. Feature-wise analysis of PSO



solutions, PSO will be spending a lot more of the computation
time with solutions resulting in these poor fitnesses. Future
work will explore the filtering or re-generation of particles for
which this occurs.

C. Further Analysis

A useful consideration that arose during the analysis of
the produced counterfactuals was that some features could
be more important than others for the purpose of generating
counterfactual explanations. To explore this, the three datasets
with the fewest number of features were chosen for analysis.
The counterfactuals produced were analysed, with the number
of times each feature was modified among the different exper-
imental runs and the total scaled size of these changes being
recorded. Graphs of this analysis are shown in Figures 3-5.

The strength of the PSO method in reducing the number
of features modified can be further observed in these graphs.
While both DE and GA modify each feature an almost uniform
number of times, in both the Penguins and Breast Cancer
Wisconsin datasets the PSO algorithm shows clear variation
in how much each feature is used in the counterfactual
explanations. In addition to this, the amount each feature is
used does not necessarily correlate to how much that feature
was modified. For example, despite all algorithms modifying
all features in the Wine dataset an almost uniform number of
times, the amount each was modified by shows strong inter-
feature variance. When reporting counterfactual explanations
to users, a basic metric of amount modified

times modified should be considered
to determine how important of a consideration each feature
should be. This balances the importance of the feature and
the amount of change required with the abnormality of that
feature appearing in an explanation.

D. Qualitative Analysis

To give a visual idea of the quality of counterfactuals
produced by the PSO algorithm, the Penguins dataset is used.
The purpose of this dataset is to differentiate between three
species of penguin found in Antarctica. These are Adelie,
Chinstrap, and Gentoo penguins. Figure 6 shows an example
of each of the three penguin species, sourced from an online
bird-watching directory [28]. The features in the dataset are
bill length, bill depth, flipper length, and body mass.

For this analysis five instances from the data are chosen at
random, and a counterfactual to each other type of penguin is
generated. Table III shows the best counterfactual explanations
produced in each of these runs.

Comparing the produced counterfactuals to the visual traits
of the three species, it can be observed that the produced
counterfactual explanations are reasonable. Adelie penguins
have short bills and flippers, so increasing the bill length
causes one to be classified as a Chinstrap and increasing
the flipper length causes one to be classified as a Gentoo.
Likewise, the Chinstrap can be classified as an Adelie by
reducing the size of the bill, or as a Gentoo by increasing
the length of the flippers. As the species with the largest
features, the Gentoo penguins can be classified as Adelie by

TABLE III
PENGUIN COUNTERFACTUALS

From To B. length B. depth F. length Mass

Adelie Chinstrap +5.95 - - -
Gentoo - -1.15 +14.0 -

Adelie Chinstrap +5.40 - - -
Gentoo - -2.45 +21.0 -

Chinstrap Adelie -5.05 -0.05 - -
Gentoo - - +8.50 -

Gentoo Adelie -5.80 - -2.50 -
Chinstrap +0.75 +1.35 -3.00 -

Gentoo Adelie -8.15 - -9.50 -
Chinstrap - +2.55 -1.50 -25.0

reducing the size of both the bill and flippers or as Chinstrap
by increasing the bill depth but decreasing the length of the
flippers and the body mass. The final counterfactual is the
most abnormal one, as it is the only one of the 10 generated
explanations that considers the body mass. However, this is
still consistent with the visual appearance of the different
species, where the Chinstrap looks a lot leaner than the
Gentoo.

While this is a simple task, this analysis can give us confi-
dence that the algorithm works as intended. This can be used
to motivate the use of the algorithm for more complex tasks
that are more difficult for a non-expert to reliably qualitatively
verify.

VI. CONCLUSIONS

This paper introduced new algorithms to produce counter-
factual explanations utilising PSO and DE. To our knowledge,
this is the first work to explore the use of these algorithms for
the task of counterfactual production. These explanations are
shown to modify fewer features from the original instances
and to require changes of a lesser magnitude than previous
evolutionary work to generate counterfactuals. In addition
to this, graphical analysis of individual features has shown
that the PSO algorithm is better at utilising only important
features compared to other similar work. Finally, a simple
qualitative analysis showed that the generated counterfactuals
are reasonable, and reflect real-world causal relationships in
the data.

Future work will focus on two main areas of the method:
a more complex fitness function and niching to produce a
more diverse population of explanations. The more complex
fitness function will consider the abnormality of feature val-
ues in instances in order to produce more human-friendly
explanations that are more likely to be accepted by users.
This is in line with existing research on how a human would
produce a counterfactual explanation [29]. In addition to this,
more explicit penalisation will be explored for the number of
features used in order to encourage sparser explanations.

Early experiments in applying niching to the PSO algorithm
have shown promise to produce counterfactual explanations
utilising a range of different distinct feature subsets. This
will be further explored to allow the presentation of multiple
explanations to users, that they can then select from.



Fig. 6. Adelie, Chinstrap, and Gentoo penguins [28]
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